結果
| 問題 |
No.114 遠い未来
|
| コンテスト | |
| ユーザー |
Nachia
|
| 提出日時 | 2024-07-05 00:41:30 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,104 ms / 5,000 ms |
| コード長 | 13,160 bytes |
| コンパイル時間 | 1,760 ms |
| コンパイル使用メモリ | 133,912 KB |
| 最終ジャッジ日時 | 2025-02-22 02:07:36 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
#include <vector>
#include <utility>
#include <cassert>
#include <algorithm>
namespace nachia{
template<class Elem>
class CsrArray{
public:
struct ListRange{
using iterator = typename std::vector<Elem>::iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
Elem& operator[](int i) const { return begi[i]; }
};
struct ConstListRange{
using iterator = typename std::vector<Elem>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const Elem& operator[](int i) const { return begi[i]; }
};
private:
int m_n;
std::vector<Elem> m_list;
std::vector<int> m_pos;
public:
CsrArray() : m_n(0), m_list(), m_pos() {}
static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
CsrArray res;
res.m_n = n;
std::vector<int> buf(n+1, 0);
for(auto& [u,v] : items){ ++buf[u]; }
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
res.m_list.resize(buf[n]);
for(int i=(int)items.size()-1; i>=0; i--){
res.m_list[--buf[items[i].first]] = std::move(items[i].second);
}
res.m_pos = std::move(buf);
return res;
}
static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
CsrArray res;
res.m_n = pos.size() - 1;
res.m_list = std::move(list);
res.m_pos = std::move(pos);
return res;
}
ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
int size() const { return m_n; }
int fullSize() const { return (int)m_list.size(); }
};
} // namespace nachia
namespace nachia{
struct Graph {
public:
struct Edge{
int from, to;
void reverse(){ std::swap(from, to); }
int xorval() const { return from ^ to; }
};
Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {}
Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){
m_e.resize(edges.size());
for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
}
template<class Cin>
static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){
Graph res(n, undirected, m);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
res[i].from = u - offset;
res[i].to = v - offset;
}
return res;
}
int numVertices() const noexcept { return m_n; }
int numEdges() const noexcept { return int(m_e.size()); }
int addNode() noexcept { return m_n++; }
int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
Edge& operator[](int ei) noexcept { return m_e[ei]; }
const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
Edge& at(int ei) { return m_e.at(ei); }
const Edge& at(int ei) const { return m_e.at(ei); }
auto begin(){ return m_e.begin(); }
auto end(){ return m_e.end(); }
auto begin() const { return m_e.begin(); }
auto end() const { return m_e.end(); }
bool isUndirected() const noexcept { return m_isUndir; }
void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
void contract(int newV, const std::vector<int>& mapping){
assert(numVertices() == int(mapping.size()));
for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
m_n = newV;
}
std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
int n = numVertices();
assert(n == int(mapping.size()));
for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
std::vector<int> indexV(n), newV(num);
for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
std::vector<Graph> res; res.reserve(num);
for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
return res;
}
CsrArray<int> getEdgeIndexArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(int i=0; i<numEdges(); i++){
auto e = operator[](i);
src.emplace_back(e.from, i);
if(undirected) src.emplace_back(e.to, i);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
CsrArray<int> getAdjacencyArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(auto e : m_e){
src.emplace_back(e.from, e.to);
if(undirected) src.emplace_back(e.to, e.from);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
int m_n;
std::vector<Edge> m_e;
bool m_isUndir;
};
} // namespace nachia
namespace nachia {
struct DsuFast{
private:
std::vector<int> w;
public:
DsuFast(int n = 0) : w(n, -1) {}
int leader(int u){
if(w[u] < 0) return u;
return w[u] = leader(w[u]);
}
int operator[](int u){ return leader(u); }
int merge(int u, int v){
u = leader(u);
v = leader(v);
if(u == v) return u;
if(-w[u] < -w[v]) std::swap(u, v);
w[u] += w[v];
w[v] = u;
return u;
}
int size(int u){ return -w[leader(u)]; }
bool same(int u, int v){ return leader(u) == leader(v); }
};
} // namespace nachia
#include <queue>
namespace nachia{
template<class Weight>
struct MultipleTimeDijkstra{
private:
template<class T>
using nega_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>;
struct IncidentEdge{
int to;
int e;
Weight w;
};
std::vector<std::vector<IncidentEdge>> inci;
int n;
int m;
Weight inf;
public:
MultipleTimeDijkstra(
Graph _graph,
std::vector<Weight> _weight,
Weight _inf
)
: n(_graph.numVertices())
, m(_graph.numEdges())
, inf(_inf)
{
inci.resize(n);
for(int e=0; e<m; e++){
auto [u,v] = _graph[e];
inci[u].push_back({ v, e, _weight[e] });
inci[v].push_back({ u, e, _weight[e] });
}
}
std::vector<int> solve(std::vector<Weight>& w){
if(n == 0) return {};
std::vector<int> res(n, -1);
if(m/n <= 5){
std::vector<int> vis(n, 0);
for(int t=0; t<n; t++){
int v = -1;
for(int s=0; s<n; s++) if(vis[s] == 0) if(v == -1 || w[s] < w[v]) v = s;
for(auto& evx : inci[v]){
Weight nxd = w[v] + evx.w;
int x = evx.to;
if(!(nxd < w[x])) continue;
w[x] = nxd;
res[x] = evx.e;
}
vis[v] = 1;
}
} else {
nega_queue<std::pair<Weight, int>> que;
for(int v=0; v<n; v++) que.push({ w[v], v });
while(!que.empty()){
auto [wv,v] = que.top(); que.pop();
if(w[v] < wv) continue;
for(auto& evx : inci[v]){
Weight nxd = w[v] + evx.w;
int x = evx.to;
if(!(nxd < w[x])) continue;
w[x] = nxd;
que.push({ nxd, x });
res[x] = evx.e;
}
}
}
return res;
}
};
struct MinimumSteinerTree{
using Weight = long long;
Graph graph;
std::vector<int> terminals;
std::vector<Weight> weight;
Weight inf;
std::vector<std::vector<std::pair<int,Weight>>> dp;
private:
template<class T>
using nega_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>;
public:
MinimumSteinerTree(
Graph _graph,
std::vector<int> _terminals,
std::vector<Weight> _weight,
Weight _inf
)
: graph(std::move(_graph))
, terminals(std::move(_terminals))
, weight(std::move(_weight))
, inf(_inf)
{
int n = graph.numVertices();
int m = graph.numEdges();
int k = int(terminals.size());
dp.assign(1<<k, std::vector<std::pair<int,Weight>>(n, std::make_pair(-m-1, inf)));
auto zero = Weight(0);
for(int i=0; i<n; i++) dp[0][i] = std::make_pair(-n-1, zero);
auto dijkstra = MultipleTimeDijkstra<Weight>(graph, weight, inf);
auto check = [&](int i, int v, int pre, Weight w){
if(w < dp[i][v].second) dp[i][v] = { pre, w };
};
for(int i=0; i<(1<<k); i++){
{
std::vector<Weight> F(n);
for(int v=0; v<n; v++) F[v] = dp[i][v].second;
auto P = dijkstra.solve(F);
for(int v=0; v<n; v++) if(P[v] >= 0) dp[i][v] = { -P[v] - 1, F[v] };
}
for(int kk=0; kk<k; kk++) if(!(i&(1<<k))){
auto v = terminals[kk];
check(i|(1<<kk), v, dp[i][v].first, dp[i][v].second);
}
int j0 = 1;
while(j0 <= i) j0 <<= 1;
for(int j=(j0-1)&~i; j>0; j=((j-1)&~i)) for(int v=0; v<n; v++){
check(i|j, v, j, dp[i][v].second + dp[j][v].second);
}
}
}
Weight minWeight(int mask){
if(mask == 0) return Weight(0);
int k=0; while(!(mask & (1<<k))) k++;
return dp[mask][terminals[k]].second;
}
};
template<class Weight>
std::vector<int> MinimumSteinerTreeExhaustiveMstMethod(
const Graph& graph,
const std::vector<Weight>& weight,
const std::vector<int>& excluded
){
assert(excluded.size() <= 30);
struct Edge {
int u;
int v;
int e;
Weight w;
};
int n = graph.numVertices();
int m = graph.numEdges();
int k = excluded.size();
std::vector<Edge> edges(m);
for(int e=0; e<m; e++){
edges[e] = { graph[e].from, graph[e].to, e, weight[e] };
}
std::sort(edges.begin(), edges.end(), [](const Edge& l, const Edge& r){ return l.w < r.w; });
std::vector<int> is_ex(n);
std::pair<Weight, int> anslight = { Weight(0), -1 };
for(int f=0; f<(1<<k); f++){
int exc = n-1;
for(int i=0; i<k; i++){
int q = (f >> i) & 1;
exc -= q;
is_ex[excluded[i]] = q;
}
DsuFast dsu(n);
Weight wsum = Weight(0);
int cnt = 0;
for(auto& e : edges){
if(is_ex[e.u] || is_ex[e.v]) continue;
if(dsu.same(e.u, e.v)) continue;
dsu.merge(e.u, e.v);
cnt++;
wsum += e.w;
}
if(cnt != exc) continue;
if(f == 0 || wsum < anslight.first) anslight = { wsum, f };
}
std::vector<int> selectedEdges;
{
int f = anslight.second;
for(int i=0; i<k; i++) is_ex[excluded[i]] = ((f >> i) & 1);
DsuFast dsu(n);
for(auto& e : edges){
if(is_ex[e.u] || is_ex[e.v]) continue;
if(dsu.same(e.u, e.v)) continue;
dsu.merge(e.u, e.v);
selectedEdges.push_back(e.e);
}
}
return selectedEdges;
}
} // namespace nachia
#include <iostream>
#include <string>
#include <array>
#include <cmath>
int main(){
using namespace std;
ios::sync_with_stdio(false); cin.tie(nullptr);
int N, M, T; cin >> N >> M >> T;
nachia::Graph graph(N, true);
vector<long long> weight;
for(int i=0; i<M; i++){
int u,v,c; cin >> u >> v >> c; u--; v--;
graph.addEdge(u,v);
weight.push_back(c);
}
vector<int> terminals(T);
for(int t=0; t<T; t++){
int a; cin >> a;
terminals[t] = a-1;
}
if(T <= 16){
auto st = nachia::MinimumSteinerTree(graph, terminals, weight, 1001001001001);
cout << st.minWeight((1<<T)-1) << endl;
} else {
vector<int> mask(N);
for(int t : terminals) mask[t] = 1;
vector<int> ex;
for(int i=0; i<N; i++) if(!mask[i]) ex.push_back(i);
auto edges = nachia::MinimumSteinerTreeExhaustiveMstMethod(graph, weight, ex);
long long ans = 0;
for(int e : edges) ans += weight[e];
cout << ans << endl;
}
return 0;
}
Nachia