結果
| 問題 |
No.2808 Concentration
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-07-09 23:14:54 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,762 bytes |
| コンパイル時間 | 10,099 ms |
| コンパイル使用メモリ | 274,824 KB |
| 最終ジャッジ日時 | 2025-02-22 02:51:42 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 53 WA * 1 TLE * 3 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
template <class S, S (*op)(S, S), S (*e)()> class dynamic_segtree {
public:
dynamic_segtree(size_t n) : n(n), root(nullptr) {}
void set(size_t p, S x) {
assert(p < n);
set(root, 0, n, p, x);
}
S get(size_t p) const {
assert(p < n);
return get(root, 0, n, p);
}
S prod(size_t l, size_t r) const {
assert(l <= r && r <= n);
return prod(root, 0, n, l, r);
}
S all_prod() const { return root ? root->product : e(); }
void reset(size_t l, size_t r) {
assert(l <= r && r <= n);
return reset(root, 0, n, l, r);
}
template <bool (*f)(S)> size_t max_right(size_t l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> size_t max_right(size_t l, const F& f) const {
assert(l <= n);
S product = e();
assert(f(product));
return max_right(root, 0, n, l, f, product);
}
template <bool (*f)(S)> size_t min_left(size_t r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> size_t min_left(size_t r, const F& f) const {
assert(r <= n);
S product = e();
assert(f(product));
return min_left(root, 0, n, r, f, product);
}
private:
struct node;
using node_ptr = std::unique_ptr<node>;
struct node {
size_t index;
S value, product;
node_ptr left, right;
node(size_t index, S value)
: index(index),
value(value),
product(value),
left(nullptr),
right(nullptr) {}
void update() {
product = op(op(left ? left->product : e(), value),
right ? right->product : e());
}
};
const size_t n;
node_ptr root;
void set(node_ptr& t, size_t a, size_t b, size_t p, S x) const {
if (!t) {
t = std::make_unique<node>(p, x);
return;
}
if (t->index == p) {
t->value = x;
t->update();
return;
}
size_t c = (a + b) >> 1;
if (p < c) {
if (t->index < p) std::swap(t->index, p), std::swap(t->value, x);
set(t->left, a, c, p, x);
} else {
if (p < t->index) std::swap(p, t->index), std::swap(x, t->value);
set(t->right, c, b, p, x);
}
t->update();
}
S get(const node_ptr& t, size_t a, size_t b, size_t p) const {
if (!t) return e();
if (t->index == p) return t->value;
size_t c = (a + b) >> 1;
if (p < c) return get(t->left, a, c, p);
else return get(t->right, c, b, p);
}
S prod(const node_ptr& t, size_t a, size_t b, size_t l, size_t r) const {
if (!t || b <= l || r <= a) return e();
if (l <= a && b <= r) return t->product;
size_t c = (a + b) >> 1;
S result = prod(t->left, a, c, l, r);
if (l <= t->index && t->index < r) result = op(result, t->value);
return op(result, prod(t->right, c, b, l, r));
}
void reset(node_ptr& t, size_t a, size_t b, size_t l, size_t r) const {
if (!t || b <= l || r <= a) return;
if (l <= a && b <= r) {
t.reset();
return;
}
size_t c = (a + b) >> 1;
reset(t->left, a, c, l, r);
reset(t->right, c, b, l, r);
t->update();
}
};
using S = long long;
S op(S a, S b){
return max(a, b);
}
S e(){
return 0;
};
int main(){
long long n, s, h;
cin >> n >> s >> h;
vector<int> x(n), y(n), z(n);
for(int i = 0; i < n; i++){
cin >> x[i] >> y[i] >> z[i];
}
vector<long long> ch;
for(int i = 0; i < n; i++){
ch.push_back(x[i]);
ch.push_back(y[i]);
ch.push_back(x[i]-h);
ch.push_back(y[i]-h);
ch.push_back(x[i]+s+h);
ch.push_back(y[i]+s+h);
ch.push_back(x[i]+s-h);
ch.push_back(y[i]+s-h);
ch.push_back(x[i]-s+h);
ch.push_back(y[i]-s+h);
}
sort(ch.begin(), ch.end());
int m = (int)ch.size();
dynamic_segtree<S, op, e> d(1LL<<31);
int pz = 3;
if(n < 150000) pz = 5;
if(n < 100000) pz = 7;
if(n < 50000) pz = 8;
vector<pair<int, int>> p(pz);
vector<long long> sum(pz);
for(auto a:ch){
if(a < 0) continue;
if(a >= (1LL<<31)) continue;
long long cnt = 0;
for(int i = 0; i < pz; i++){
while(a-(s+h)*(i+1) > x[p[i].first] && p[i].first < n){
sum[i] -= z[p[i].first];
p[i].first++;
}
while(a-(s+h)*(i+1)+s >= y[p[i].second] && p[i].second < n){
sum[i] += z[p[i].second];
p[i].second++;
}
cnt += sum[i];
long long u = d.prod(0, max(0LL, a-(s+h)*(i+1))) + cnt;
d.set(a, max(d.get(a), u));
}
}
cout << d.prod(0, 1LL<<31) << endl;
}