結果

問題 No.2805 Go to School
ユーザー 👑 seekworser
提出日時 2024-07-12 21:31:29
言語 Nim
(2.2.0)
結果
AC  
実行時間 333 ms / 2,000 ms
コード長 19,321 bytes
コンパイル時間 5,654 ms
コンパイル使用メモリ 95,404 KB
実行使用メモリ 29,400 KB
最終ジャッジ日時 2024-07-16 01:37:56
合計ジャッジ時間 12,189 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/tmpl/citrus.nim
ImportExpand "cplib/tmpl/citrus" <=== "when not declared CPLIB_TMPL_CITRUS:\n const CPLIB_TMPL_CITRUS* = 1\n {.warning[UnusedImport]: off.}\n
     {.hint[XDeclaredButNotUsed]: off.}\n import os\n import algorithm\n import sequtils\n import tables\n import macros\n import
    std/math\n import sets\n import strutils\n import strformat\n import sugar\n import streams\n import deques\n import bitops\n
     import heapqueue\n import options\n import hashes\n const MODINT998244353* = 998244353\n const MODINT1000000007* = 1000000007\n
    when not declared CPLIB_UTILS_CONSTANTS:\n const CPLIB_UTILS_CONSTANTS* = 1\n const INF32*: int32 = 100100111.int32\n const
    INF64*: int = int(3300300300300300491)\n \n const INFL = INF64\n type double* = float64\n let readNext = iterator(getsChar: bool =
    false): string {.closure.} =\n while true:\n var si: string\n try: si = stdin.readLine\n except EOFError:
    yield \"\"\n for s in si.split:\n if getsChar:\n for i in 0..<s.len():\n yield
    s[i..i]\n else:\n if s.isEmptyOrWhitespace: continue\n yield s\n proc input*(t:
    typedesc[string]): string = readNext()\n proc input*(t: typedesc[char]): char = readNext(true)[0]\n proc input*(t: typedesc[int]): int =
    readNext().parseInt\n proc input*(t: typedesc[float]): float = readNext().parseFloat\n macro input*(t: typedesc, n: varargs[int]): untyped
    =\n var repStr = \"\"\n for arg in n:\n repStr &= &\"({arg.repr}).newSeqWith \"\n parseExpr(&\"{repStr}input({t}
    )\")\n macro input*(ts: varargs[auto]): untyped =\n var tupStr = \"\"\n for t in ts:\n tupStr &= &\"input({t.repr}
    ),\"\n parseExpr(&\"({tupStr})\")\n macro input*(n: int, ts: varargs[auto]): untyped =\n for typ in ts:\n if typ
    .typeKind != ntyAnything:\n error(\"Expected typedesc, got \" & typ.repr, typ)\n parseExpr(&\"({n.repr}).newSeqWith input
    ({ts.repr})\")\n proc `fmtprint`*(x: int or string or char or bool): string = return $x\n proc `fmtprint`*(x: float or float32 or float64):
    string = return &\"{x:.16f}\"\n proc `fmtprint`*[T](x: seq[T] or Deque[T] or HashSet[T] or set[T]): string = return x.toSeq.join(\" \")\n
    proc `fmtprint`*[T, N](x: array[T, N]): string = return x.toSeq.join(\" \")\n proc `fmtprint`*[T](x: HeapQueue[T]): string =\n var q =
    x\n while q.len != 0:\n result &= &\"{q.pop()}\"\n if q.len != 0: result &= \" \"\n proc `fmtprint`*[T](x:
    CountTable[T]): string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc `fmtprint`*[K, V](x: Table[K, V]):
    string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc print*(prop: tuple[f: File, sepc: string, endc: string
    , flush: bool], args: varargs[string, `fmtprint`]) =\n for i in 0..<len(args):\n prop.f.write(&\"{args[i]}\")\n if i
    != len(args) - 1: prop.f.write(prop.sepc) else: prop.f.write(prop.endc)\n if prop.flush: prop.f.flushFile()\n proc print*(args:
    varargs[string, `fmtprint`]) = print((f: stdout, sepc: \" \", endc: \"\\n\", flush: false), args)\n const LOCAL_DEBUG{.booldefine.} = false\n
     macro getSymbolName(x: typed): string = x.toStrLit\n macro debug*(args: varargs[untyped]): untyped =\n when LOCAL_DEBUG:\n
    result = newNimNode(nnkStmtList, args)\n template prop(e: string = \"\"): untyped = (f: stderr, sepc: \"\", endc: e, flush: true)\n
     for i, arg in args:\n if arg.kind == nnkStrLit:\n result.add(quote do: print(prop(), \"\\\"\", `arg`,
    \"\\\"\"))\n else:\n result.add(quote do: print(prop(\": \"), getSymbolName(`arg`)))\n result
    .add(quote do: print(prop(), `arg`))\n if i != args.len - 1: result.add(quote do: print(prop(), \", \"))\n else:
    result.add(quote do: print(prop(), \"\\n\"))\n else:\n return (quote do: discard)\n proc `%`*(x: SomeInteger, y: SomeInteger
    ): int =\n result = x mod y\n if y > 0 and result < 0: result += y\n if y < 0 and result > 0: result += y\n proc `//`*(x:
    SomeInteger, y: SomeInteger): int =\n result = x div y\n if y > 0 and result * y > x: result -= 1\n if y < 0 and result * y <
    x: result -= 1\n proc `^`*(x: SomeInteger, y: SomeInteger): int = x xor y\n proc `&`*(x: SomeInteger, y: SomeInteger): int = x and y\n
    proc `|`*(x: SomeInteger, y: SomeInteger): int = x or y\n proc `>>`*(x: SomeInteger, y: SomeInteger): int = x shr y\n proc `<<`*(x:
    SomeInteger, y: SomeInteger): int = x shl y\n proc `%=`*(x: var SomeInteger, y: SomeInteger): void = x = x % y\n proc `//=`*(x: var
    SomeInteger, y: SomeInteger): void = x = x // y\n proc `^=`*(x: var SomeInteger, y: SomeInteger): void = x = x ^ y\n proc `&=`*(x: var
    SomeInteger, y: SomeInteger): void = x = x & y\n proc `|=`*(x: var SomeInteger, y: SomeInteger): void = x = x | y\n proc `>>=`*(x: var
    SomeInteger, y: SomeInteger): void = x = x >> y\n proc `<<=`*(x: var SomeInteger, y: SomeInteger): void = x = x << y\n proc `[]`*(x, n: int
    ): bool = (x and (1 shl n)) != 0\n proc `[]=`*(x: var int, n: int, i: bool) =\n if i: x = x or (1 << n)\n else: (if x[n]: x = x
    xor (1 << n))\n proc pow*(a, n: int, m = INF64): int =\n var\n rev = 1\n a = a\n n = n\n while n
    > 0:\n if n % 2 != 0: rev = (rev * a) mod m\n if n > 1: a = (a * a) mod m\n n >>= 1\n return rev\n when
    not declared CPLIB_MATH_ISQRT:\n const CPLIB_MATH_ISQRT* = 1\n proc isqrt*(n: int): int =\n var x = n\n var y
    = (x + 1) shr 1\n while y < x:\n x = y\n y = (x + n div x) shr 1\n return x\n \n proc
    chmax*[T](x: var T, y: T): bool {.discardable.} = (if x < y: (x = y; return true; ) return false)\n proc chmin*[T](x: var T, y: T): bool {
    .discardable.} = (if x > y: (x = y; return true; ) return false)\n proc `max=`*[T](x: var T, y: T) = x = max(x, y)\n proc `min=`*[T](x: var
    T, y: T) = x = min(x, y)\n proc at*(x: char, a = '0'): int = int(x) - int(a)\n proc Yes*(b: bool = true): void = print(if b: \"Yes\" else:
    \"No\")\n proc No*(b: bool = true): void = Yes(not b)\n proc YES_upper*(b: bool = true): void = print(if b: \"YES\" else: \"NO\")\n proc
    NO_upper*(b: bool = true): void = Yes_upper(not b)\n const DXY* = [(0, -1), (0, 1), (-1, 0), (1, 0)]\n const DDXY* = [(1, -1), (1, 0), (1, 1
    ), (0, -1), (0, 1), (-1, -1), (-1, 0), (-1, 1)]\n macro exit*(statement: untyped): untyped = (quote do: (`statement`; quit()))\n proc
    initHashSet[T](): Hashset[T] = initHashSet[T](0)\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/graph/graph.nim
ImportExpand "cplib/graph/graph" <=== "when not declared CPLIB_GRAPH_GRAPH:\n const CPLIB_GRAPH_GRAPH* = 1\n\n import sequtils\n import
    math\n type DynamicGraph*[T] = ref object of RootObj\n edges*: seq[seq[(int32, T)]]\n len*: int\n type StaticGraph*[T] = ref
    object of RootObj\n src*, dst*: seq[int32]\n cost*: seq[T]\n elist*: seq[(int32, T)]\n start*: seq[int32]\n len
    *: int\n\n type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n type WeightedUnDirectedGraph*[T] = ref object of
    DynamicGraph[T]\n type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n type UnWeightedUnDirectedGraph* = ref object of
    DynamicGraph[int]\n type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n type WeightedUnDirectedStaticGraph*[T] = ref
    object of StaticGraph[T]\n type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n type UnWeightedUnDirectedStaticGraph* =
    ref object of StaticGraph[int]\n\n type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n type DirectedGraph* = WeightedDirectedGraph or
    UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n type UnDirectedGraph* = WeightedUnDirectedGraph or
    UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n type WeightedGraph*[T] =
    WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n type
    UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n
    type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n type
    StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or
    UnWeightedUnDirectedStaticGraph\n\n proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n g
    .edges[u].add((v.int32, cost))\n if not directed: g.edges[v].add((u.int32, cost))\n\n proc initWeightedDirectedGraph*(N: int, edgetype:
    typedesc = int): WeightedDirectedGraph[edgetype] =\n result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len
    : N)\n proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, true)\n\n proc
    initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n result =
    WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v
    : int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, false)\n\n proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph
    =\n result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedDirectedGraph, u, v:
    int) =\n g.add_edge_dynamic_impl(u, v, 1, true)\n\n proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n
    result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int)
    =\n g.add_edge_dynamic_impl(u, v, 1, false)\n\n proc len*[T](G: WeightedGraph[T]): int = G.len\n proc len*(G: UnWeightedGraph): int =
    G.len\n\n iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield
    (e[0].int, e[1])\n iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n for e in g.edges[x]: yield
    e[0].int\n\n proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n g.src.add(u.int32)\n g.dst
    .add(v.int32)\n g.cost.add(cost)\n if not directed:\n g.src.add(v.int32)\n g.dst.add(u.int32)\n g
    .cost.add(cost)\n\n proc build_impl*[T](g: StaticGraph[T]) =\n g.start = newSeqWith(g.len + 1, 0.int32)\n for i in 0..<g.src.len
    :\n g.start[g.src[i]] += 1\n g.start.cumsum\n g.elist = newSeq[(int32, T)](g.start[^1])\n for i in countdown(g.src
    .len - 1, 0):\n var u = g.src[i]\n var v = g.dst[i]\n g.start[u] -= 1\n g.elist[g.start[u]] = (v, g
    .cost[i])\n proc build*(g: StaticGraphTypes) = g.build_impl()\n\n proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int,
    capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =\n result = WeightedDirectedStaticGraph[edgetype](\n src:
    newSeqOfCap[int32](capacity),\n dst: newSeqOfCap[int32](capacity),\n cost: newSeqOfCap[edgetype](capacity),\n
    elist: newSeq[(int32, edgetype)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*[T](g: var
    WeightedDirectedStaticGraph[T], u, v: int, cost: T) =\n g.add_edge_static_impl(u, v, cost, true)\n\n proc
    initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =\n result
    = WeightedUnDirectedStaticGraph[edgetype](\n src: newSeqOfCap[int32](capacity*2),\n dst: newSeqOfCap[int32](capacity*2),\n
     cost: newSeqOfCap[edgetype](capacity*2),\n elist: newSeq[(int32, edgetype)](0),\n start: newSeq[int32](0),\n
     len: N\n )\n proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =\n g.add_edge_static_impl(u, v
    , cost, false)\n\n proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =\n result =
    UnWeightedDirectedStaticGraph(\n src: newSeqOfCap[int32](capacity),\n dst: newSeqOfCap[int32](capacity),\n cost:
    newSeqOfCap[int](capacity),\n elist: newSeq[(int32, int)](0),\n start: newSeq[int32](0),\n len: N\n )\n
     proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =\n g.add_edge_static_impl(u, v, 1, true)\n\n proc
    initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =\n result =
    UnWeightedUnDirectedStaticGraph(\n src: newSeqOfCap[int32](capacity*2),\n dst: newSeqOfCap[int32](capacity*2),\n
    cost: newSeqOfCap[int](capacity*2),\n elist: newSeq[(int32, int)](0),\n start: newSeq[int32](0),\n len: N\n
     )\n proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =\n g.add_edge_static_impl(u, v, 1, false)\n\n proc
    static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, \"Static Graph must be initialized before use.\"\n\n iterator
    `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n
     for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n iterator `[]`*(g: UnWeightedDirectedStaticGraph or
    UnWeightedUnDirectedStaticGraph, x: int): int =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g.start[x+1]: yield g
    .elist[i][0].int\n\n iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield (e[0].int, e[1])\n
     iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g
    .start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/graph/dijkstra.nim
ImportExpand "cplib/graph/dijkstra" <=== "when not declared CPLIB_GRAPH_DIJKSTRA:\n const CPLIB_GRAPH_DIJKSTRA* = 1\n when not declared
    CPLIB_GRAPH_RESTORE_SHORTESTPATH_FROM_PREV:\n const CPLIB_GRAPH_RESTORE_SHORTESTPATH_FROM_PREV* = 1\n import algorithm\n proc
    restore_shortest_path_from_prev*(prev: seq[int], goal: int): seq[int] =\n var i = goal\n while i != -1:\n
    result.add(i)\n i = prev[i]\n result.reverse\n \n import std/heapqueue\n import macros\n proc
    restore_dijkstra_impl[T](G: DynamicGraph[T] or StaticGraph[T], start: int or seq[int], ZERO, INF: T): tuple[costs: seq[T], prev: seq[int]] =\n
     var\n queue = initHeapQueue[(T, int)]()\n costs = newSeq[T](len(G))\n prev = newseq[int](len(G))\n
    costs.fill(INF)\n prev.fill(-1)\n when start is int:\n queue.push((ZERO, start))\n costs[start] = ZERO\n
     else:\n for s in start:\n queue.push((ZERO, s))\n costs[s] = ZERO\n while len(queue) != 0:\n
     var (cost, i) = queue.pop()\n if cost > costs[i]:\n continue\n for (j, c) in G.to_and_cost(i):\n
     var temp = costs[i] + c\n if temp < costs[j]:\n prev[j] = i\n costs[j] = temp\n
     queue.push((temp, j))\n return (costs, prev)\n macro declareDijkstra(name, t, zero, inf) =\n let impl_name =
    ident($`name` & \"_impl\")\n quote do:\n proc `name`*(G: DynamicGraph[`t`] or StaticGraph[`t`], start: int or seq[int], ZERO:
    `t` = `zero`, INF: `t` = `inf`): auto =\n `impl_name`(G, start, ZERO, INF)\n declareDijkstra(restore_dijkstra, int, 0, INF64)\n
     declareDijkstra(restore_dijkstra, int32, 0i32, INF32)\n declareDijkstra(restore_dijkstra, float, 0.0, 1e100)\n proc restore_dijkstra*[T]
    (G: DynamicGraph[T] or StaticGraph[T], start: int or seq[int], ZERO, INF: T): auto =\n restore_dijkstra_impl(G, start, ZERO, INF)\n proc
    dijkstra_impl[T](G: DynamicGraph[T] or StaticGraph[T], start: int or seq[int], ZERO, INF: T): seq[T] =\n var (costs, _) = restore_dijkstra
    (G, start, ZERO, INF)\n return costs\n declareDijkstra(dijkstra, int, 0, INF64)\n declareDijkstra(dijkstra, int32, 0i32, INF32)\n
    declareDijkstra(dijkstra, float, 0.0, 1e100)\n proc dijkstra*[T](G: DynamicGraph[T] or StaticGraph[T], start: int or seq[int], ZERO, INF: T):
    auto =\n dijkstra_impl(G, start, ZERO, INF)\n proc shortest_path_dijkstra_impl[T](G: DynamicGraph[T] or StaticGraph[T], start: int, goal
    : int, ZERO: T, INF: T): tuple[path: seq[int], cost: T] =\n var (costs, prev) = restore_dijkstra(G, start, ZERO, INF)\n result.path
    = prev.restore_shortest_path_from_prev(goal)\n result.cost = costs[goal]\n proc shortest_path_dijkstra*(G: DynamicGraph[int] or
    StaticGraph[int], start: int, goal: int, ZERO: int = 0, INF: int = INF64): tuple[path: seq[int], cost: int] =\n shortest_path_dijkstra_impl
    (G, start, goal, ZERO, INF)\n proc shortest_path_dijkstra*(G: DynamicGraph[int32] or StaticGraph[int32], start: int, goal: int, ZERO: int32 = 0
    .int32, INF: int32 = INF32): tuple[path: seq[int], cost: int32] =\n shortest_path_dijkstra_impl(G, start, goal, ZERO, INF)\n proc
    shortest_path_dijkstra*[T](G: DynamicGraph[T] or StaticGraph[T], start: int, goal: int, ZERO: T, INF: T): tuple[path: seq[int], cost: T] =\n
     shortest_path_dijkstra_impl(G, start, goal, ZERO, INF)\n"
{.checks: off.}
var n, m, l, s, e = input(int)
var g = initWeightedUnDirectedStaticGraph(n, int)
for i in 0..<m:
var a, b = input(int) - 1
var t = input(int)
g.add_edge(a, b, t)
g.build
var t = input(int, l).mapIt(it-1).toHashSet
var d0 = g.dijkstra(0)
var dn = g.dijkstra(n-1)
var ans = INFL
for x in t:
if d0[x] >= s+e: continue
ans.min= max(d0[x], s) + 1 + dn[x]
print(if ans == INFL: -1 else: ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0