結果

問題 No.2807 Have Another Go (Easy)
ユーザー 👑 potato167potato167
提出日時 2024-07-12 21:58:39
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 7,203 bytes
コンパイル時間 3,943 ms
コンパイル使用メモリ 251,616 KB
実行使用メモリ 13,752 KB
最終ジャッジ日時 2024-07-12 21:59:10
合計ジャッジ時間 8,399 ms
ジャッジサーバーID
(参考情報)
judge6 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,752 KB
testcase_01 TLE -
testcase_02 -- -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "cup.cpp"
#include <bits/stdc++.h>
using namespace std;
using std::cout;
using std::cin;
using std::endl;
using ll=long long;
using ld=long double;
const ll ILL=2167167167167167167;
const int INF=2100000000;
const int mod=998244353;
#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)
#define all(p) p.begin(),p.end()
template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;
template<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> bool chmin(T &a,T b){if(a>b){a=b;return 1;}else return 0;}
template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}
template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}
template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}
bool yneos(bool a,bool upp=0){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;}
template<class T> void vec_out(vector<T> &p,int ty=0){
if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";}
else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}}
template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}
template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}
template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}
int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}
template<class T> bool inside(T l,T x,T r){return l<=x&&x<r;}
#include <atcoder/modint>
using mint = atcoder::modint998244353;
#line 3 "/Users/Shared/po167_library/fps/FPS_Boston_Mori.hpp"
#include <atcoder/convolution>
#line 4 "/Users/Shared/po167_library/fps/FPS_extend.hpp"

namespace po167{
// in  : DFT(v) (len(v) = z)
// out : DFT(v) (len(v) = 2 * z)
template<class T>
void FPS_extend(std::vector<T> &v){
    int z = v.size();
    T e = (T(atcoder::internal::primitive_root_constexpr(T::mod()))).pow(T::mod() / (2 * z));
    auto cp = v;
    atcoder::internal::butterfly_inv(cp);
    T tmp = (T)(1) / (T)(z);
    for (int i = 0; i < z; i++){
        cp[i] *= tmp;
        tmp *= e;
    }
    atcoder::internal::butterfly(cp);
    for (int i = 0; i < z; i++) v.push_back(cp[i]);
};
}
#line 3 "/Users/Shared/po167_library/fps/FPS_pick_even_odd.hpp"

namespace po167{
// s.t |v| = 2 ^ s (no assert)
template<class T>
void FPS_pick_even_odd(std::vector<T> &v, int odd){
    int z = v.size() / 2;
    T half = (T)(1) / (T)(2);
    if (odd == 0){
        for (int i = 0; i < z; i++){
            v[i] = (v[i * 2] + v[i * 2 + 1]) * half;
        }
        v.resize(z);
    } else {
        T e = (T(atcoder::internal::primitive_root_constexpr(T::mod()))).pow(T::mod() / (2 * z));
        T ie = T(1) / e;
        std::vector<T> es = {half};
        while ((int)es.size() != z){
            std::vector<T> n_es((int)es.size() * 2);
            for (int i = 0; i < (int)es.size(); i++){
                n_es[i * 2] = (es[i]);
                n_es[i * 2 + 1] = (es[i] * ie);
            }
            ie *= ie;
            std::swap(n_es, es);
        }
        for (int i = 0; i < z; i ++){
            v[i] = (v[i * 2] - v[i * 2 + 1]) * es[i];
        }
        v.resize(z);
    }
}
}
#line 7 "/Users/Shared/po167_library/fps/FPS_Boston_Mori.hpp"

namespace po167{
// return [x^k] P(x) / Q(x)
template<class T>
T Boston_Mori(long long k, std::vector<T> P, std::vector<T> Q){
    assert(!Q.empty() && Q[0] != 0);
    int z = 1;
    while (z < (int)std::max(P.size(), Q.size())) z *= 2;
    P.resize(z * 2, 0);
    Q.resize(z * 2, 0);
    atcoder::internal::butterfly(P);
    atcoder::internal::butterfly(Q);

    // fast
    while (k){
        // Q(-x)
        std::vector<T> Q_n(z * 2);
        for (int i = 0; i < z; i++){
            Q_n[i * 2] = Q[i * 2 + 1];
            Q_n[i * 2 + 1] = Q[i * 2];
        }
        for (int i = 0; i < z * 2; i++){
            P[i] *= Q_n[i];
            Q[i] *= Q_n[i];
        }
        FPS_pick_even_odd(P, k & 1);
        FPS_pick_even_odd(Q, 0);
        k /= 2;
        if (k == 0) break;
        FPS_extend(P);
        FPS_extend(Q);
    }
    T SP = 0, SQ = 0;
    for (int i = 0; i < z; i++) SP += P[i], SQ += Q[i];
    return SP / SQ;

    // simple
    /*
    while (k){
        auto n_Q = Q;
        for (int i = 0; i < int(Q.size()); i++){
            if (i & 1) n_Q[i] *= -1;
        }
        auto n_P = atcoder::convolution(P, n_Q);
        n_Q = atcoder::convolution(Q, n_Q);
        for (int i = 0; i < int(Q.size()); i++){
            Q[i] = n_Q[i * 2];
        }
        P.clear();
        for (int i = (k & 1); i < int(n_P.size()); i += 2){
            P.push_back(n_P[i]);
        }
        k >>= 1;
    }
    return P[0] / Q[0];
    */
}

template<class T>
// 0 = a[i] * c[0] + a[i - 1] * c[1] + a[i - 2] * c[2] + ... + a[i - d] * c[d]
// a.size() + 1 == c.size()
// c[0] = - 1 ?
// return a[k]
T Kth_Linear(long long k, std::vector<T> a, std::vector<T> c){
    int d = a.size();
    assert(d + 1 == int(c.size()));
    std::vector<T> P = atcoder::convolution(a, c);
    P.resize(d);
    return Boston_Mori(k, P, c);
}
};
#line 32 "cup.cpp"

using F = array<array<mint, 5>, 5>;

void solve();
// CYAN / FREDERIC
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    
    int t = 1;
    // cin >> t;
    rep(i, 0, t) solve();
}

void solve(){
    ll N, M, K;
    cin >> N >> M >> K;
    vector<mint> P = {1};
    vector<mint> Q = {1, -1, -1, -1, -1, -1, -1};
    auto f = [&](ll a) -> mint {
        if (a < 0) return 0;
        return po167::Boston_Mori(a, P, Q);
    };
    F a;
    rep(i, 0, 5) rep(j, 0, 5){
        a[i][j] = f(N - i - j - 2);
    }
    F b;
    rep(i, 0, 5) rep(j, 0, 5){
        if (i + j + 2 <= 6){
            b[i][j] = 1;
        }
        else{
            b[i][j] = 0;
        }
    }
    auto mul = [&](F l, F r) -> F {
        F c;
        rep(i, 0, 5) rep(j, 0, 5) c[i][j] = 0;
        rep(i, 0, 5) rep(j, 0, 5) rep(k, 0, 5){
            c[i][k] += l[i][j] * r[j][k];
        }
        return c;
    };
    auto pm = [&](F v, ll t) -> F {
        F c;
        rep(i, 0, 5) rep(j, 0, 5){
            c[i][j] = 0;
            if (i == j) c[i][j] = 1;
        }
        while (t){
            if (t & 1){
                c = mul(c, v);
            }
            t /= 2;
            v = mul(v, v);
        }
        return c;
    };
    F base = mul(b, pm(mul(a, b), M - 1));
    mint al = 0;
    rep(i, 0, 6) al += f(N * M - 1 - i) * (6 - i);
    while (K--){
        ll C;
        cin >> C;
        vector<mint> p(5);
        rep(i, 0, 5) p[i] = f(C - i - 1);
        vector<mint> q(5);
        rep(i, 0, 5) rep(j, 0, 5) q[j] += p[i] * base[i][j];
        mint ans = al;
        rep(i, 0, 5) rep(j, 0, 5) rep(k, 0, 6){
            if (j + 1 + k > 6) continue;
            ans -= q[i] * f(N - j - 1 - (C + 1 + i));
        }
        rep(j, 0, 5) if (C + j + 1 >= N) ans -= q[j];
        cout << ans.val() << "\n";
    }
}
0