結果

問題 No.2805 Go to School
ユーザー ruthen71ruthen71
提出日時 2024-07-12 22:02:45
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 252 ms / 2,000 ms
コード長 17,144 bytes
コンパイル時間 2,132 ms
コンパイル使用メモリ 180,488 KB
実行使用メモリ 31,304 KB
最終ジャッジ日時 2024-07-16 01:39:26
合計ジャッジ時間 6,787 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 92 ms
25,088 KB
testcase_05 AC 106 ms
19,156 KB
testcase_06 AC 62 ms
12,064 KB
testcase_07 AC 52 ms
11,904 KB
testcase_08 AC 88 ms
19,712 KB
testcase_09 AC 62 ms
11,392 KB
testcase_10 AC 48 ms
11,776 KB
testcase_11 AC 216 ms
30,352 KB
testcase_12 AC 116 ms
19,320 KB
testcase_13 AC 175 ms
24,592 KB
testcase_14 AC 24 ms
7,936 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 1 ms
5,376 KB
testcase_18 AC 91 ms
14,744 KB
testcase_19 AC 66 ms
11,136 KB
testcase_20 AC 143 ms
21,016 KB
testcase_21 AC 252 ms
30,900 KB
testcase_22 AC 97 ms
15,232 KB
testcase_23 AC 143 ms
19,876 KB
testcase_24 AC 137 ms
19,640 KB
testcase_25 AC 43 ms
11,044 KB
testcase_26 AC 182 ms
31,304 KB
testcase_27 AC 92 ms
25,796 KB
testcase_28 AC 13 ms
10,368 KB
testcase_29 AC 19 ms
11,648 KB
testcase_30 AC 49 ms
19,072 KB
testcase_31 AC 95 ms
14,208 KB
testcase_32 AC 131 ms
28,564 KB
testcase_33 AC 206 ms
27,812 KB
testcase_34 AC 2 ms
5,376 KB
testcase_35 AC 2 ms
5,376 KB
testcase_36 AC 68 ms
12,344 KB
testcase_37 AC 72 ms
14,720 KB
testcase_38 AC 133 ms
23,424 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #include "my_template.hpp"
// #include "graph/read_graph.hpp"
// #include "graph/dijkstra.hpp"
// using namespace std;
// 
// void solve() {
//     I64(N, M, L, S, E);
//     auto g = read_graph<i64>(N, M, true);
//     VEC(int, T, L);
//     vector<int> hast(N);
//     REP(i, L) hast[T[i] - 1] = 1;
//     // dist[i][j] = 頂点 i にいて, j = 0 のときトイレをしていない, j = 1 のときトイレをしている
//     vector dist(N, vector<i64>(2, INF<i64>));
//     dist[0][0] = 0;
//     using tp = tuple<i64, int, int>;
//     pqueg<tp> que;
//     que.emplace(0, 0, 0);
//     while (!que.empty()) {
//         auto [d, v, state] = que.top();
//         show(d);
//         show(v);
//         show(state);
//         que.pop();
//         if (dist[v][state] != d) continue;
//         if (state == 0 and d < S + E and hast[v]) {
//             // トイレに行く
//             if (chmin(dist[v][1], max(dist[v][0], S) + 1)) {
//                 que.emplace(dist[v][1], v, 1);
//             }
//         }
//         FORE(e, g[v]) {
//             show(e.to);
//             if (chmin(dist[e.to][state], dist[v][state] + e.cost)) {
//                 que.emplace(dist[e.to][state], e.to, state);
//             }
//         }
//     }
//     i64 ans = dist[N - 1][1];
//     if (ans == INF<i64>) ans = -1;
//     print(ans);
//     return;
// }
// 
// int main() {
//     solve();
//     return 0;
// }
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#ifdef RUTHEN_LOCAL
#include <debug.hpp>
#else
#define show(x) true
#endif

// type definition
using i64 = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using f32 = float;
using f64 = double;
using f128 = long double;
template <class T> using pque = std::priority_queue<T>;
template <class T> using pqueg = std::priority_queue<T, std::vector<T>, std::greater<T>>;
// overload
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(_1, _2, _3, name, ...) name
#define overload2(_1, _2, name, ...) name
// for loop
#define REP1(a) for (long long _ = 0; _ < (a); _++)
#define REP2(i, a) for (long long i = 0; i < (a); i++)
#define REP3(i, a, b) for (long long i = (a); i < (b); i++)
#define REP4(i, a, b, c) for (long long i = (a); i < (b); i += (c))
#define REP(...) overload4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
#define RREP1(a) for (long long _ = (a)-1; _ >= 0; _--)
#define RREP2(i, a) for (long long i = (a)-1; i >= 0; i--)
#define RREP3(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define RREP(...) overload3(__VA_ARGS__, RREP3, RREP2, RREP1)(__VA_ARGS__)
#define FORE1(x, a) for (auto&& x : a)
#define FORE2(x, y, a) for (auto&& [x, y] : a)
#define FORE3(x, y, z, a) for (auto&& [x, y, z] : a)
#define FORE(...) overload4(__VA_ARGS__, FORE3, FORE2, FORE1)(__VA_ARGS__)
#define FORSUB(t, s) for (long long t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
// function
#define ALL(a) (a).begin(), (a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define SORT(a) std::sort((a).begin(), (a).end())
#define RSORT(a) std::sort((a).rbegin(), (a).rend())
#define REV(a) std::reverse((a).begin(), (a).end())
#define UNIQUE(a)                      \
    std::sort((a).begin(), (a).end()); \
    (a).erase(std::unique((a).begin(), (a).end()), (a).end())
#define LEN(a) (int)((a).size())
#define MIN(a) *std::min_element((a).begin(), (a).end())
#define MAX(a) *std::max_element((a).begin(), (a).end())
#define SUM1(a) std::accumulate((a).begin(), (a).end(), 0LL)
#define SUM2(a, x) std::accumulate((a).begin(), (a).end(), (x))
#define SUM(...) overload2(__VA_ARGS__, SUM2, SUM1)(__VA_ARGS__)
#define LB(a, x) std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x)))
#define UB(a, x) std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x)))
template <class T, class U> inline bool chmin(T& a, const U& b) { return (a > T(b) ? a = b, 1 : 0); }
template <class T, class U> inline bool chmax(T& a, const U& b) { return (a < T(b) ? a = b, 1 : 0); }
template <class T, class S> inline T floor(const T x, const S y) {
    assert(y);
    return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <class T, class S> inline T ceil(const T x, const S y) {
    assert(y);
    return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}
template <class T, class S> std::pair<T, T> inline divmod(const T x, const S y) {
    T q = floor(x, y);
    return {q, x - q * y};
}
// 10 ^ n
constexpr long long TEN(int n) { return (n == 0) ? 1 : 10LL * TEN(n - 1); }
// 1 + 2 + ... + n
#define TRI1(n) ((n) * ((n) + 1LL) / 2)
// l + (l + 1) + ... + r
#define TRI2(l, r) (((l) + (r)) * ((r) - (l) + 1LL) / 2)
#define TRI(...) overload2(__VA_ARGS__, TRI2, TRI1)(__VA_ARGS__)
// bit operation
// bit[i] (= 0 or 1)
#define IBIT(bit, i) (((bit) >> (i)) & 1)
// (0, 1, 2, 3, 4) -> (0, 1, 3, 7, 15)
#define MASK(n) ((1LL << (n)) - 1)
#define POW2(n) (1LL << (n))
// (0, 1, 2, 3, 4) -> (0, 1, 1, 2, 1)
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(i64 x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(i64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(i64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
// binary search (integer)
template <class T, class F> T bin_search(T ok, T ng, F& f) {
    while ((ok > ng ? ok - ng : ng - ok) > 1) {
        T md = (ng + ok) >> 1;
        (f(md) ? ok : ng) = md;
    }
    return ok;
}
// binary search (real number)
template <class T, class F> T bin_search_real(T ok, T ng, F& f, const int iter = 100) {
    for (int _ = 0; _ < iter; _++) {
        T md = (ng + ok) / 2;
        (f(md) ? ok : ng) = md;
    }
    return ok;
}
// floor(sqrt(x))
template <class T> constexpr T sqrt_floor(T x) { return T(sqrtl(x)); }
// check if [l1, r1) and [l2, r2) intersect
template <class T> constexpr bool intersect(const T l1, const T r1, const T l2, const T r2) { return std::max(l1, l2) < std::min(r1, r2); }
// check if [a.first, a.second) and [b.first, b.second) intersect
template <class T> constexpr bool intersect(const std::pair<T, T>& a, const std::pair<T, T>& b) { return intersect(a.first, a.second, b.first, b.second); }
// rotate matrix counterclockwise by pi / 2
template <class T> void rot(std::vector<std::vector<T>>& a) {
    if ((int)(a.size()) == 0) return;
    if ((int)(a[0].size()) == 0) return;
    int n = (int)(a.size()), m = (int)(a[0].size());
    std::vector res(m, std::vector<T>(n));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            res[m - 1 - j][i] = a[i][j];
        }
    }
    a.swap(res);
}
// const value
constexpr int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
constexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
// infinity
template <class T> constexpr T INF = 0;
template <> constexpr int INF<int> = 1'000'000'000;                 // 1e9
template <> constexpr i64 INF<i64> = i64(INF<int>) * INF<int> * 2;  // 2e18
template <> constexpr u32 INF<u32> = INF<int>;                      // 1e9
template <> constexpr u64 INF<u64> = INF<i64>;                      // 2e18
template <> constexpr f32 INF<f32> = INF<i64>;                      // 2e18
template <> constexpr f64 INF<f64> = INF<i64>;                      // 2e18
template <> constexpr f128 INF<f128> = INF<i64>;                    // 2e18
// I/O
// input
template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
    for (auto&& i : v) is >> i;
    return is;
}
template <class... T> void in(T&... a) { (std::cin >> ... >> a); }
void scan() {}
template <class Head, class... Tail> void scan(Head& head, Tail&... tail) {
    in(head);
    scan(tail...);
}
// input macro
#define INT(...)     \
    int __VA_ARGS__; \
    scan(__VA_ARGS__)
#define I64(...)     \
    i64 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define U32(...)     \
    u32 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define U64(...)     \
    u64 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define F32(...)     \
    f32 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define F64(...)     \
    f64 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define F128(...)     \
    f128 __VA_ARGS__; \
    scan(__VA_ARGS__)
#define STR(...)             \
    std::string __VA_ARGS__; \
    scan(__VA_ARGS__)
#define CHR(...)      \
    char __VA_ARGS__; \
    scan(__VA_ARGS__)
#define VEC(type, name, size)     \
    std::vector<type> name(size); \
    scan(name)
#define VEC2(type, name1, name2, size)          \
    std::vector<type> name1(size), name2(size); \
    for (int i = 0; i < size; i++) scan(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size)                \
    std::vector<type> name1(size), name2(size), name3(size); \
    for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size)                      \
    std::vector<type> name1(size), name2(size), name3(size), name4(size); \
    for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i], name4[i])
#define VV(type, name, h, w)                       \
    std::vector name((h), std::vector<type>((w))); \
    scan(name)
// output
template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    auto n = v.size();
    for (size_t i = 0; i < n; i++) {
        if (i) os << ' ';
        os << v[i];
    }
    return os;
}
template <class... T> void out(const T&... a) { (std::cout << ... << a); }
void print() { out('\n'); }
template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {
    out(head);
    if (sizeof...(Tail)) out(' ');
    print(tail...);
}
// for interactive problems
void printi() { std::cout << std::endl; }
template <class Head, class... Tail> void printi(Head&& head, Tail&&... tail) {
    out(head);
    if (sizeof...(Tail)) out(' ');
    printi(tail...);
}
// bool output
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void NO(bool t = 1) { YES(!t); }
void No(bool t = 1) { Yes(!t); }
void no(bool t = 1) { yes(!t); }
void POSSIBLE(bool t = 1) { print(t ? "POSSIBLE" : "IMPOSSIBLE"); }
void Possible(bool t = 1) { print(t ? "Possible" : "Impossible"); }
void possible(bool t = 1) { print(t ? "possible" : "impossible"); }
void IMPOSSIBLE(bool t = 1) { POSSIBLE(!t); }
void Impossible(bool t = 1) { Possible(!t); }
void impossible(bool t = 1) { possible(!t); }
void FIRST(bool t = 1) { print(t ? "FIRST" : "SECOND"); }
void First(bool t = 1) { print(t ? "First" : "Second"); }
void first(bool t = 1) { print(t ? "first" : "second"); }
void SECOND(bool t = 1) { FIRST(!t); }
void Second(bool t = 1) { First(!t); }
void second(bool t = 1) { first(!t); }
// I/O speed up
struct SetUpIO {
    SetUpIO() {
        std::ios::sync_with_stdio(false);
        std::cin.tie(0);
        std::cout << std::fixed << std::setprecision(15);
    }
} set_up_io;

template <class T> struct Edge {
    int from, to;
    T cost;
    int id;

    Edge() = default;
    Edge(int from, int to, T cost = 1, int id = -1) : from(from), to(to), cost(cost), id(id) {}

    friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) {
        // output format: "{ id : from -> to, cost }"
        return os << "{ " << e.id << " : " << e.from << " -> " << e.to << ", " << e.cost << " }";
    }
};

template <class T> using Edges = std::vector<Edge<T>>;
template <class T> using Graph = std::vector<std::vector<Edge<T>>>;

template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) {
    Graph<T> g(n);
    for (int i = 0; i < m; i++) {
        int a, b;
        std::cin >> a >> b;
        a -= offset, b -= offset;
        if (weight) {
            T c;
            std::cin >> c;
            if (!directed) g[b].push_back(Edge(b, a, c, i));
            g[a].push_back(Edge(a, b, c, i));
        } else {
            // c = 1
            if (!directed) g[b].push_back(Edge(b, a, T(1), i));
            g[a].push_back(Edge(a, b, T(1), i));
        }
    }
    return g;
}

template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) {
    Graph<T> g(n);
    for (int i = 1; i < n; i++) {
        int p;
        std::cin >> p;
        p -= offset;
        if (weight) {
            T c;
            std::cin >> c;
            if (!directed) g[i].push_back(Edge(i, p, c, i - 1));
            g[p].push_back(Edge(p, i, c, i - 1));
        } else {
            // c = 1
            if (!directed) g[i].push_back(Edge(i, p, T(1), i - 1));
            g[p].push_back(Edge(p, i, T(1), i - 1));
        }
    }
    return g;
}

std::tuple<Graph<int>, std::vector<std::vector<int>>, std::vector<std::pair<int, int>>> read_grid(const int h, const int w, std::string rel = ".#") {
    std::vector<std::string> s(h);
    std::vector id(h, std::vector<int>(w, -1));
    std::vector<std::pair<int, int>> loc;
    int n = 0;
    for (int i = 0; i < h; i++) {
        std::cin >> s[i];
        for (int j = 0; j < w; j++) {
            if (s[i][j] == rel[1]) {
                id[i][j] = n++;
                loc.emplace_back(i, j);
            }
        }
    }
    int m = 0;
    Graph<int> g(n);
    for (int i = 0; i < h; i++) {
        for (int j = 0; j < w; j++) {
            if (s[i][j] == rel[1]) {
                if (i + 1 < h and s[i + 1][j] == rel[1]) {
                    g[id[i][j]].push_back(Edge(id[i][j], id[i + 1][j], 1, m));
                    g[id[i + 1][j]].push_back(Edge(id[i + 1][j], id[i][j], 1, m++));
                }
                if (j + 1 < w and s[i][j + 1] == rel[1]) {
                    g[id[i][j]].push_back(Edge(id[i][j], id[i][j + 1], 1, m));
                    g[id[i][j + 1]].push_back(Edge(id[i][j + 1], id[i][j], 1, m++));
                }
            }
        }
    }
    return {g, id, loc};
}

template <class T>
std::tuple<std::vector<T>, std::vector<int>, std::vector<int>>  //
dijkstra(Graph<T>& g, std::vector<int>& s, const T INF) {
    const int n = (int)(g.size());
    std::vector<T> dist(n, INF);
    std::vector<int> par(n, -1), root(n, -1);

    std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>> que;

    for (auto& v : s) {
        dist[v] = 0;
        root[v] = v;
        que.emplace(T(0), v);
    }

    while (!que.empty()) {
        auto [d, v] = que.top();
        que.pop();
        if (dist[v] != d) continue;  // dist[v] < d
        for (auto& e : g[v]) {
            if (dist[e.to] > d + e.cost) {
                dist[e.to] = d + e.cost;
                root[e.to] = root[v];
                par[e.to] = v;
                que.emplace(dist[e.to], e.to);
            }
        }
    }
    return {dist, par, root};
}
using namespace std;

void solve() {
    I64(N, M, L, S, E);
    auto g = read_graph<i64>(N, M, true);
    VEC(int, T, L);
    vector<int> hast(N);
    REP(i, L) hast[T[i] - 1] = 1;
    // dist[i][j] = 頂点 i にいて, j = 0 のときトイレをしていない, j = 1 のときトイレをしている
    vector dist(N, vector<i64>(2, INF<i64>));
    dist[0][0] = 0;
    using tp = tuple<i64, int, int>;
    pqueg<tp> que;
    que.emplace(0, 0, 0);
    while (!que.empty()) {
        auto [d, v, state] = que.top();
        show(d);
        show(v);
        show(state);
        que.pop();
        if (dist[v][state] != d) continue;
        if (state == 0 and d < S + E and hast[v]) {
            // トイレに行く
            if (chmin(dist[v][1], max(dist[v][0], S) + 1)) {
                que.emplace(dist[v][1], v, 1);
            }
        }
        FORE(e, g[v]) {
            show(e.to);
            if (chmin(dist[e.to][state], dist[v][state] + e.cost)) {
                que.emplace(dist[e.to][state], e.to, state);
            }
        }
    }
    i64 ans = dist[N - 1][1];
    if (ans == INF<i64>) ans = -1;
    print(ans);
    return;
}

int main() {
    solve();
    return 0;
}
0