結果
| 問題 |
No.2805 Go to School
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-07-12 22:02:45 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 214 ms / 2,000 ms |
| コード長 | 17,144 bytes |
| コンパイル時間 | 2,037 ms |
| コンパイル使用メモリ | 182,768 KB |
| 実行使用メモリ | 32,236 KB |
| 最終ジャッジ日時 | 2025-04-09 15:38:56 |
| 合計ジャッジ時間 | 6,230 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 36 |
ソースコード
// #include "my_template.hpp"
// #include "graph/read_graph.hpp"
// #include "graph/dijkstra.hpp"
// using namespace std;
//
// void solve() {
// I64(N, M, L, S, E);
// auto g = read_graph<i64>(N, M, true);
// VEC(int, T, L);
// vector<int> hast(N);
// REP(i, L) hast[T[i] - 1] = 1;
// // dist[i][j] = 頂点 i にいて, j = 0 のときトイレをしていない, j = 1 のときトイレをしている
// vector dist(N, vector<i64>(2, INF<i64>));
// dist[0][0] = 0;
// using tp = tuple<i64, int, int>;
// pqueg<tp> que;
// que.emplace(0, 0, 0);
// while (!que.empty()) {
// auto [d, v, state] = que.top();
// show(d);
// show(v);
// show(state);
// que.pop();
// if (dist[v][state] != d) continue;
// if (state == 0 and d < S + E and hast[v]) {
// // トイレに行く
// if (chmin(dist[v][1], max(dist[v][0], S) + 1)) {
// que.emplace(dist[v][1], v, 1);
// }
// }
// FORE(e, g[v]) {
// show(e.to);
// if (chmin(dist[e.to][state], dist[v][state] + e.cost)) {
// que.emplace(dist[e.to][state], e.to, state);
// }
// }
// }
// i64 ans = dist[N - 1][1];
// if (ans == INF<i64>) ans = -1;
// print(ans);
// return;
// }
//
// int main() {
// solve();
// return 0;
// }
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#ifdef RUTHEN_LOCAL
#include <debug.hpp>
#else
#define show(x) true
#endif
// type definition
using i64 = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using f32 = float;
using f64 = double;
using f128 = long double;
template <class T> using pque = std::priority_queue<T>;
template <class T> using pqueg = std::priority_queue<T, std::vector<T>, std::greater<T>>;
// overload
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(_1, _2, _3, name, ...) name
#define overload2(_1, _2, name, ...) name
// for loop
#define REP1(a) for (long long _ = 0; _ < (a); _++)
#define REP2(i, a) for (long long i = 0; i < (a); i++)
#define REP3(i, a, b) for (long long i = (a); i < (b); i++)
#define REP4(i, a, b, c) for (long long i = (a); i < (b); i += (c))
#define REP(...) overload4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
#define RREP1(a) for (long long _ = (a)-1; _ >= 0; _--)
#define RREP2(i, a) for (long long i = (a)-1; i >= 0; i--)
#define RREP3(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define RREP(...) overload3(__VA_ARGS__, RREP3, RREP2, RREP1)(__VA_ARGS__)
#define FORE1(x, a) for (auto&& x : a)
#define FORE2(x, y, a) for (auto&& [x, y] : a)
#define FORE3(x, y, z, a) for (auto&& [x, y, z] : a)
#define FORE(...) overload4(__VA_ARGS__, FORE3, FORE2, FORE1)(__VA_ARGS__)
#define FORSUB(t, s) for (long long t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
// function
#define ALL(a) (a).begin(), (a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define SORT(a) std::sort((a).begin(), (a).end())
#define RSORT(a) std::sort((a).rbegin(), (a).rend())
#define REV(a) std::reverse((a).begin(), (a).end())
#define UNIQUE(a) \
std::sort((a).begin(), (a).end()); \
(a).erase(std::unique((a).begin(), (a).end()), (a).end())
#define LEN(a) (int)((a).size())
#define MIN(a) *std::min_element((a).begin(), (a).end())
#define MAX(a) *std::max_element((a).begin(), (a).end())
#define SUM1(a) std::accumulate((a).begin(), (a).end(), 0LL)
#define SUM2(a, x) std::accumulate((a).begin(), (a).end(), (x))
#define SUM(...) overload2(__VA_ARGS__, SUM2, SUM1)(__VA_ARGS__)
#define LB(a, x) std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x)))
#define UB(a, x) std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x)))
template <class T, class U> inline bool chmin(T& a, const U& b) { return (a > T(b) ? a = b, 1 : 0); }
template <class T, class U> inline bool chmax(T& a, const U& b) { return (a < T(b) ? a = b, 1 : 0); }
template <class T, class S> inline T floor(const T x, const S y) {
assert(y);
return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1)));
}
template <class T, class S> inline T ceil(const T x, const S y) {
assert(y);
return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y));
}
template <class T, class S> std::pair<T, T> inline divmod(const T x, const S y) {
T q = floor(x, y);
return {q, x - q * y};
}
// 10 ^ n
constexpr long long TEN(int n) { return (n == 0) ? 1 : 10LL * TEN(n - 1); }
// 1 + 2 + ... + n
#define TRI1(n) ((n) * ((n) + 1LL) / 2)
// l + (l + 1) + ... + r
#define TRI2(l, r) (((l) + (r)) * ((r) - (l) + 1LL) / 2)
#define TRI(...) overload2(__VA_ARGS__, TRI2, TRI1)(__VA_ARGS__)
// bit operation
// bit[i] (= 0 or 1)
#define IBIT(bit, i) (((bit) >> (i)) & 1)
// (0, 1, 2, 3, 4) -> (0, 1, 3, 7, 15)
#define MASK(n) ((1LL << (n)) - 1)
#define POW2(n) (1LL << (n))
// (0, 1, 2, 3, 4) -> (0, 1, 1, 2, 1)
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(i64 x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(i64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(i64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
// binary search (integer)
template <class T, class F> T bin_search(T ok, T ng, F& f) {
while ((ok > ng ? ok - ng : ng - ok) > 1) {
T md = (ng + ok) >> 1;
(f(md) ? ok : ng) = md;
}
return ok;
}
// binary search (real number)
template <class T, class F> T bin_search_real(T ok, T ng, F& f, const int iter = 100) {
for (int _ = 0; _ < iter; _++) {
T md = (ng + ok) / 2;
(f(md) ? ok : ng) = md;
}
return ok;
}
// floor(sqrt(x))
template <class T> constexpr T sqrt_floor(T x) { return T(sqrtl(x)); }
// check if [l1, r1) and [l2, r2) intersect
template <class T> constexpr bool intersect(const T l1, const T r1, const T l2, const T r2) { return std::max(l1, l2) < std::min(r1, r2); }
// check if [a.first, a.second) and [b.first, b.second) intersect
template <class T> constexpr bool intersect(const std::pair<T, T>& a, const std::pair<T, T>& b) { return intersect(a.first, a.second, b.first, b.second); }
// rotate matrix counterclockwise by pi / 2
template <class T> void rot(std::vector<std::vector<T>>& a) {
if ((int)(a.size()) == 0) return;
if ((int)(a[0].size()) == 0) return;
int n = (int)(a.size()), m = (int)(a[0].size());
std::vector res(m, std::vector<T>(n));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
res[m - 1 - j][i] = a[i][j];
}
}
a.swap(res);
}
// const value
constexpr int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
constexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
// infinity
template <class T> constexpr T INF = 0;
template <> constexpr int INF<int> = 1'000'000'000; // 1e9
template <> constexpr i64 INF<i64> = i64(INF<int>) * INF<int> * 2; // 2e18
template <> constexpr u32 INF<u32> = INF<int>; // 1e9
template <> constexpr u64 INF<u64> = INF<i64>; // 2e18
template <> constexpr f32 INF<f32> = INF<i64>; // 2e18
template <> constexpr f64 INF<f64> = INF<i64>; // 2e18
template <> constexpr f128 INF<f128> = INF<i64>; // 2e18
// I/O
// input
template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (auto&& i : v) is >> i;
return is;
}
template <class... T> void in(T&... a) { (std::cin >> ... >> a); }
void scan() {}
template <class Head, class... Tail> void scan(Head& head, Tail&... tail) {
in(head);
scan(tail...);
}
// input macro
#define INT(...) \
int __VA_ARGS__; \
scan(__VA_ARGS__)
#define I64(...) \
i64 __VA_ARGS__; \
scan(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
scan(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
scan(__VA_ARGS__)
#define F32(...) \
f32 __VA_ARGS__; \
scan(__VA_ARGS__)
#define F64(...) \
f64 __VA_ARGS__; \
scan(__VA_ARGS__)
#define F128(...) \
f128 __VA_ARGS__; \
scan(__VA_ARGS__)
#define STR(...) \
std::string __VA_ARGS__; \
scan(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
scan(__VA_ARGS__)
#define VEC(type, name, size) \
std::vector<type> name(size); \
scan(name)
#define VEC2(type, name1, name2, size) \
std::vector<type> name1(size), name2(size); \
for (int i = 0; i < size; i++) scan(name1[i], name2[i])
#define VEC3(type, name1, name2, name3, size) \
std::vector<type> name1(size), name2(size), name3(size); \
for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i])
#define VEC4(type, name1, name2, name3, name4, size) \
std::vector<type> name1(size), name2(size), name3(size), name4(size); \
for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i], name4[i])
#define VV(type, name, h, w) \
std::vector name((h), std::vector<type>((w))); \
scan(name)
// output
template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
auto n = v.size();
for (size_t i = 0; i < n; i++) {
if (i) os << ' ';
os << v[i];
}
return os;
}
template <class... T> void out(const T&... a) { (std::cout << ... << a); }
void print() { out('\n'); }
template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {
out(head);
if (sizeof...(Tail)) out(' ');
print(tail...);
}
// for interactive problems
void printi() { std::cout << std::endl; }
template <class Head, class... Tail> void printi(Head&& head, Tail&&... tail) {
out(head);
if (sizeof...(Tail)) out(' ');
printi(tail...);
}
// bool output
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void NO(bool t = 1) { YES(!t); }
void No(bool t = 1) { Yes(!t); }
void no(bool t = 1) { yes(!t); }
void POSSIBLE(bool t = 1) { print(t ? "POSSIBLE" : "IMPOSSIBLE"); }
void Possible(bool t = 1) { print(t ? "Possible" : "Impossible"); }
void possible(bool t = 1) { print(t ? "possible" : "impossible"); }
void IMPOSSIBLE(bool t = 1) { POSSIBLE(!t); }
void Impossible(bool t = 1) { Possible(!t); }
void impossible(bool t = 1) { possible(!t); }
void FIRST(bool t = 1) { print(t ? "FIRST" : "SECOND"); }
void First(bool t = 1) { print(t ? "First" : "Second"); }
void first(bool t = 1) { print(t ? "first" : "second"); }
void SECOND(bool t = 1) { FIRST(!t); }
void Second(bool t = 1) { First(!t); }
void second(bool t = 1) { first(!t); }
// I/O speed up
struct SetUpIO {
SetUpIO() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout << std::fixed << std::setprecision(15);
}
} set_up_io;
template <class T> struct Edge {
int from, to;
T cost;
int id;
Edge() = default;
Edge(int from, int to, T cost = 1, int id = -1) : from(from), to(to), cost(cost), id(id) {}
friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) {
// output format: "{ id : from -> to, cost }"
return os << "{ " << e.id << " : " << e.from << " -> " << e.to << ", " << e.cost << " }";
}
};
template <class T> using Edges = std::vector<Edge<T>>;
template <class T> using Graph = std::vector<std::vector<Edge<T>>>;
template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) {
Graph<T> g(n);
for (int i = 0; i < m; i++) {
int a, b;
std::cin >> a >> b;
a -= offset, b -= offset;
if (weight) {
T c;
std::cin >> c;
if (!directed) g[b].push_back(Edge(b, a, c, i));
g[a].push_back(Edge(a, b, c, i));
} else {
// c = 1
if (!directed) g[b].push_back(Edge(b, a, T(1), i));
g[a].push_back(Edge(a, b, T(1), i));
}
}
return g;
}
template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) {
Graph<T> g(n);
for (int i = 1; i < n; i++) {
int p;
std::cin >> p;
p -= offset;
if (weight) {
T c;
std::cin >> c;
if (!directed) g[i].push_back(Edge(i, p, c, i - 1));
g[p].push_back(Edge(p, i, c, i - 1));
} else {
// c = 1
if (!directed) g[i].push_back(Edge(i, p, T(1), i - 1));
g[p].push_back(Edge(p, i, T(1), i - 1));
}
}
return g;
}
std::tuple<Graph<int>, std::vector<std::vector<int>>, std::vector<std::pair<int, int>>> read_grid(const int h, const int w, std::string rel = ".#") {
std::vector<std::string> s(h);
std::vector id(h, std::vector<int>(w, -1));
std::vector<std::pair<int, int>> loc;
int n = 0;
for (int i = 0; i < h; i++) {
std::cin >> s[i];
for (int j = 0; j < w; j++) {
if (s[i][j] == rel[1]) {
id[i][j] = n++;
loc.emplace_back(i, j);
}
}
}
int m = 0;
Graph<int> g(n);
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
if (s[i][j] == rel[1]) {
if (i + 1 < h and s[i + 1][j] == rel[1]) {
g[id[i][j]].push_back(Edge(id[i][j], id[i + 1][j], 1, m));
g[id[i + 1][j]].push_back(Edge(id[i + 1][j], id[i][j], 1, m++));
}
if (j + 1 < w and s[i][j + 1] == rel[1]) {
g[id[i][j]].push_back(Edge(id[i][j], id[i][j + 1], 1, m));
g[id[i][j + 1]].push_back(Edge(id[i][j + 1], id[i][j], 1, m++));
}
}
}
}
return {g, id, loc};
}
template <class T>
std::tuple<std::vector<T>, std::vector<int>, std::vector<int>> //
dijkstra(Graph<T>& g, std::vector<int>& s, const T INF) {
const int n = (int)(g.size());
std::vector<T> dist(n, INF);
std::vector<int> par(n, -1), root(n, -1);
std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>> que;
for (auto& v : s) {
dist[v] = 0;
root[v] = v;
que.emplace(T(0), v);
}
while (!que.empty()) {
auto [d, v] = que.top();
que.pop();
if (dist[v] != d) continue; // dist[v] < d
for (auto& e : g[v]) {
if (dist[e.to] > d + e.cost) {
dist[e.to] = d + e.cost;
root[e.to] = root[v];
par[e.to] = v;
que.emplace(dist[e.to], e.to);
}
}
}
return {dist, par, root};
}
using namespace std;
void solve() {
I64(N, M, L, S, E);
auto g = read_graph<i64>(N, M, true);
VEC(int, T, L);
vector<int> hast(N);
REP(i, L) hast[T[i] - 1] = 1;
// dist[i][j] = 頂点 i にいて, j = 0 のときトイレをしていない, j = 1 のときトイレをしている
vector dist(N, vector<i64>(2, INF<i64>));
dist[0][0] = 0;
using tp = tuple<i64, int, int>;
pqueg<tp> que;
que.emplace(0, 0, 0);
while (!que.empty()) {
auto [d, v, state] = que.top();
show(d);
show(v);
show(state);
que.pop();
if (dist[v][state] != d) continue;
if (state == 0 and d < S + E and hast[v]) {
// トイレに行く
if (chmin(dist[v][1], max(dist[v][0], S) + 1)) {
que.emplace(dist[v][1], v, 1);
}
}
FORE(e, g[v]) {
show(e.to);
if (chmin(dist[e.to][state], dist[v][state] + e.cost)) {
que.emplace(dist[e.to][state], e.to, state);
}
}
}
i64 ans = dist[N - 1][1];
if (ans == INF<i64>) ans = -1;
print(ans);
return;
}
int main() {
solve();
return 0;
}