結果
問題 | No.2805 Go to School |
ユーザー | ruthen71 |
提出日時 | 2024-07-12 22:02:45 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 252 ms / 2,000 ms |
コード長 | 17,144 bytes |
コンパイル時間 | 2,132 ms |
コンパイル使用メモリ | 180,488 KB |
実行使用メモリ | 31,304 KB |
最終ジャッジ日時 | 2024-07-16 01:39:26 |
合計ジャッジ時間 | 6,787 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 92 ms
25,088 KB |
testcase_05 | AC | 106 ms
19,156 KB |
testcase_06 | AC | 62 ms
12,064 KB |
testcase_07 | AC | 52 ms
11,904 KB |
testcase_08 | AC | 88 ms
19,712 KB |
testcase_09 | AC | 62 ms
11,392 KB |
testcase_10 | AC | 48 ms
11,776 KB |
testcase_11 | AC | 216 ms
30,352 KB |
testcase_12 | AC | 116 ms
19,320 KB |
testcase_13 | AC | 175 ms
24,592 KB |
testcase_14 | AC | 24 ms
7,936 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 91 ms
14,744 KB |
testcase_19 | AC | 66 ms
11,136 KB |
testcase_20 | AC | 143 ms
21,016 KB |
testcase_21 | AC | 252 ms
30,900 KB |
testcase_22 | AC | 97 ms
15,232 KB |
testcase_23 | AC | 143 ms
19,876 KB |
testcase_24 | AC | 137 ms
19,640 KB |
testcase_25 | AC | 43 ms
11,044 KB |
testcase_26 | AC | 182 ms
31,304 KB |
testcase_27 | AC | 92 ms
25,796 KB |
testcase_28 | AC | 13 ms
10,368 KB |
testcase_29 | AC | 19 ms
11,648 KB |
testcase_30 | AC | 49 ms
19,072 KB |
testcase_31 | AC | 95 ms
14,208 KB |
testcase_32 | AC | 131 ms
28,564 KB |
testcase_33 | AC | 206 ms
27,812 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 68 ms
12,344 KB |
testcase_37 | AC | 72 ms
14,720 KB |
testcase_38 | AC | 133 ms
23,424 KB |
ソースコード
// #include "my_template.hpp" // #include "graph/read_graph.hpp" // #include "graph/dijkstra.hpp" // using namespace std; // // void solve() { // I64(N, M, L, S, E); // auto g = read_graph<i64>(N, M, true); // VEC(int, T, L); // vector<int> hast(N); // REP(i, L) hast[T[i] - 1] = 1; // // dist[i][j] = 頂点 i にいて, j = 0 のときトイレをしていない, j = 1 のときトイレをしている // vector dist(N, vector<i64>(2, INF<i64>)); // dist[0][0] = 0; // using tp = tuple<i64, int, int>; // pqueg<tp> que; // que.emplace(0, 0, 0); // while (!que.empty()) { // auto [d, v, state] = que.top(); // show(d); // show(v); // show(state); // que.pop(); // if (dist[v][state] != d) continue; // if (state == 0 and d < S + E and hast[v]) { // // トイレに行く // if (chmin(dist[v][1], max(dist[v][0], S) + 1)) { // que.emplace(dist[v][1], v, 1); // } // } // FORE(e, g[v]) { // show(e.to); // if (chmin(dist[e.to][state], dist[v][state] + e.cost)) { // que.emplace(dist[e.to][state], e.to, state); // } // } // } // i64 ans = dist[N - 1][1]; // if (ans == INF<i64>) ans = -1; // print(ans); // return; // } // // int main() { // solve(); // return 0; // } #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <memory> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #ifdef RUTHEN_LOCAL #include <debug.hpp> #else #define show(x) true #endif // type definition using i64 = long long; using u32 = unsigned int; using u64 = unsigned long long; using f32 = float; using f64 = double; using f128 = long double; template <class T> using pque = std::priority_queue<T>; template <class T> using pqueg = std::priority_queue<T, std::vector<T>, std::greater<T>>; // overload #define overload4(_1, _2, _3, _4, name, ...) name #define overload3(_1, _2, _3, name, ...) name #define overload2(_1, _2, name, ...) name // for loop #define REP1(a) for (long long _ = 0; _ < (a); _++) #define REP2(i, a) for (long long i = 0; i < (a); i++) #define REP3(i, a, b) for (long long i = (a); i < (b); i++) #define REP4(i, a, b, c) for (long long i = (a); i < (b); i += (c)) #define REP(...) overload4(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__) #define RREP1(a) for (long long _ = (a)-1; _ >= 0; _--) #define RREP2(i, a) for (long long i = (a)-1; i >= 0; i--) #define RREP3(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define RREP(...) overload3(__VA_ARGS__, RREP3, RREP2, RREP1)(__VA_ARGS__) #define FORE1(x, a) for (auto&& x : a) #define FORE2(x, y, a) for (auto&& [x, y] : a) #define FORE3(x, y, z, a) for (auto&& [x, y, z] : a) #define FORE(...) overload4(__VA_ARGS__, FORE3, FORE2, FORE1)(__VA_ARGS__) #define FORSUB(t, s) for (long long t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) // function #define ALL(a) (a).begin(), (a).end() #define RALL(a) (a).rbegin(), (a).rend() #define SORT(a) std::sort((a).begin(), (a).end()) #define RSORT(a) std::sort((a).rbegin(), (a).rend()) #define REV(a) std::reverse((a).begin(), (a).end()) #define UNIQUE(a) \ std::sort((a).begin(), (a).end()); \ (a).erase(std::unique((a).begin(), (a).end()), (a).end()) #define LEN(a) (int)((a).size()) #define MIN(a) *std::min_element((a).begin(), (a).end()) #define MAX(a) *std::max_element((a).begin(), (a).end()) #define SUM1(a) std::accumulate((a).begin(), (a).end(), 0LL) #define SUM2(a, x) std::accumulate((a).begin(), (a).end(), (x)) #define SUM(...) overload2(__VA_ARGS__, SUM2, SUM1)(__VA_ARGS__) #define LB(a, x) std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x))) #define UB(a, x) std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x))) template <class T, class U> inline bool chmin(T& a, const U& b) { return (a > T(b) ? a = b, 1 : 0); } template <class T, class U> inline bool chmax(T& a, const U& b) { return (a < T(b) ? a = b, 1 : 0); } template <class T, class S> inline T floor(const T x, const S y) { assert(y); return (y < 0 ? floor(-x, -y) : (x > 0 ? x / y : x / y - (x % y == 0 ? 0 : 1))); } template <class T, class S> inline T ceil(const T x, const S y) { assert(y); return (y < 0 ? ceil(-x, -y) : (x > 0 ? (x + y - 1) / y : x / y)); } template <class T, class S> std::pair<T, T> inline divmod(const T x, const S y) { T q = floor(x, y); return {q, x - q * y}; } // 10 ^ n constexpr long long TEN(int n) { return (n == 0) ? 1 : 10LL * TEN(n - 1); } // 1 + 2 + ... + n #define TRI1(n) ((n) * ((n) + 1LL) / 2) // l + (l + 1) + ... + r #define TRI2(l, r) (((l) + (r)) * ((r) - (l) + 1LL) / 2) #define TRI(...) overload2(__VA_ARGS__, TRI2, TRI1)(__VA_ARGS__) // bit operation // bit[i] (= 0 or 1) #define IBIT(bit, i) (((bit) >> (i)) & 1) // (0, 1, 2, 3, 4) -> (0, 1, 3, 7, 15) #define MASK(n) ((1LL << (n)) - 1) #define POW2(n) (1LL << (n)) // (0, 1, 2, 3, 4) -> (0, 1, 1, 2, 1) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(i64 x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(i64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(i64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } // binary search (integer) template <class T, class F> T bin_search(T ok, T ng, F& f) { while ((ok > ng ? ok - ng : ng - ok) > 1) { T md = (ng + ok) >> 1; (f(md) ? ok : ng) = md; } return ok; } // binary search (real number) template <class T, class F> T bin_search_real(T ok, T ng, F& f, const int iter = 100) { for (int _ = 0; _ < iter; _++) { T md = (ng + ok) / 2; (f(md) ? ok : ng) = md; } return ok; } // floor(sqrt(x)) template <class T> constexpr T sqrt_floor(T x) { return T(sqrtl(x)); } // check if [l1, r1) and [l2, r2) intersect template <class T> constexpr bool intersect(const T l1, const T r1, const T l2, const T r2) { return std::max(l1, l2) < std::min(r1, r2); } // check if [a.first, a.second) and [b.first, b.second) intersect template <class T> constexpr bool intersect(const std::pair<T, T>& a, const std::pair<T, T>& b) { return intersect(a.first, a.second, b.first, b.second); } // rotate matrix counterclockwise by pi / 2 template <class T> void rot(std::vector<std::vector<T>>& a) { if ((int)(a.size()) == 0) return; if ((int)(a[0].size()) == 0) return; int n = (int)(a.size()), m = (int)(a[0].size()); std::vector res(m, std::vector<T>(n)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { res[m - 1 - j][i] = a[i][j]; } } a.swap(res); } // const value constexpr int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; constexpr int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; // infinity template <class T> constexpr T INF = 0; template <> constexpr int INF<int> = 1'000'000'000; // 1e9 template <> constexpr i64 INF<i64> = i64(INF<int>) * INF<int> * 2; // 2e18 template <> constexpr u32 INF<u32> = INF<int>; // 1e9 template <> constexpr u64 INF<u64> = INF<i64>; // 2e18 template <> constexpr f32 INF<f32> = INF<i64>; // 2e18 template <> constexpr f64 INF<f64> = INF<i64>; // 2e18 template <> constexpr f128 INF<f128> = INF<i64>; // 2e18 // I/O // input template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) { for (auto&& i : v) is >> i; return is; } template <class... T> void in(T&... a) { (std::cin >> ... >> a); } void scan() {} template <class Head, class... Tail> void scan(Head& head, Tail&... tail) { in(head); scan(tail...); } // input macro #define INT(...) \ int __VA_ARGS__; \ scan(__VA_ARGS__) #define I64(...) \ i64 __VA_ARGS__; \ scan(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ scan(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ scan(__VA_ARGS__) #define F32(...) \ f32 __VA_ARGS__; \ scan(__VA_ARGS__) #define F64(...) \ f64 __VA_ARGS__; \ scan(__VA_ARGS__) #define F128(...) \ f128 __VA_ARGS__; \ scan(__VA_ARGS__) #define STR(...) \ std::string __VA_ARGS__; \ scan(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ scan(__VA_ARGS__) #define VEC(type, name, size) \ std::vector<type> name(size); \ scan(name) #define VEC2(type, name1, name2, size) \ std::vector<type> name1(size), name2(size); \ for (int i = 0; i < size; i++) scan(name1[i], name2[i]) #define VEC3(type, name1, name2, name3, size) \ std::vector<type> name1(size), name2(size), name3(size); \ for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i]) #define VEC4(type, name1, name2, name3, name4, size) \ std::vector<type> name1(size), name2(size), name3(size), name4(size); \ for (int i = 0; i < size; i++) scan(name1[i], name2[i], name3[i], name4[i]) #define VV(type, name, h, w) \ std::vector name((h), std::vector<type>((w))); \ scan(name) // output template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) { auto n = v.size(); for (size_t i = 0; i < n; i++) { if (i) os << ' '; os << v[i]; } return os; } template <class... T> void out(const T&... a) { (std::cout << ... << a); } void print() { out('\n'); } template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) { out(head); if (sizeof...(Tail)) out(' '); print(tail...); } // for interactive problems void printi() { std::cout << std::endl; } template <class Head, class... Tail> void printi(Head&& head, Tail&&... tail) { out(head); if (sizeof...(Tail)) out(' '); printi(tail...); } // bool output void YES(bool t = 1) { print(t ? "YES" : "NO"); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void NO(bool t = 1) { YES(!t); } void No(bool t = 1) { Yes(!t); } void no(bool t = 1) { yes(!t); } void POSSIBLE(bool t = 1) { print(t ? "POSSIBLE" : "IMPOSSIBLE"); } void Possible(bool t = 1) { print(t ? "Possible" : "Impossible"); } void possible(bool t = 1) { print(t ? "possible" : "impossible"); } void IMPOSSIBLE(bool t = 1) { POSSIBLE(!t); } void Impossible(bool t = 1) { Possible(!t); } void impossible(bool t = 1) { possible(!t); } void FIRST(bool t = 1) { print(t ? "FIRST" : "SECOND"); } void First(bool t = 1) { print(t ? "First" : "Second"); } void first(bool t = 1) { print(t ? "first" : "second"); } void SECOND(bool t = 1) { FIRST(!t); } void Second(bool t = 1) { First(!t); } void second(bool t = 1) { first(!t); } // I/O speed up struct SetUpIO { SetUpIO() { std::ios::sync_with_stdio(false); std::cin.tie(0); std::cout << std::fixed << std::setprecision(15); } } set_up_io; template <class T> struct Edge { int from, to; T cost; int id; Edge() = default; Edge(int from, int to, T cost = 1, int id = -1) : from(from), to(to), cost(cost), id(id) {} friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) { // output format: "{ id : from -> to, cost }" return os << "{ " << e.id << " : " << e.from << " -> " << e.to << ", " << e.cost << " }"; } }; template <class T> using Edges = std::vector<Edge<T>>; template <class T> using Graph = std::vector<std::vector<Edge<T>>>; template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) { Graph<T> g(n); for (int i = 0; i < m; i++) { int a, b; std::cin >> a >> b; a -= offset, b -= offset; if (weight) { T c; std::cin >> c; if (!directed) g[b].push_back(Edge(b, a, c, i)); g[a].push_back(Edge(a, b, c, i)); } else { // c = 1 if (!directed) g[b].push_back(Edge(b, a, T(1), i)); g[a].push_back(Edge(a, b, T(1), i)); } } return g; } template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) { Graph<T> g(n); for (int i = 1; i < n; i++) { int p; std::cin >> p; p -= offset; if (weight) { T c; std::cin >> c; if (!directed) g[i].push_back(Edge(i, p, c, i - 1)); g[p].push_back(Edge(p, i, c, i - 1)); } else { // c = 1 if (!directed) g[i].push_back(Edge(i, p, T(1), i - 1)); g[p].push_back(Edge(p, i, T(1), i - 1)); } } return g; } std::tuple<Graph<int>, std::vector<std::vector<int>>, std::vector<std::pair<int, int>>> read_grid(const int h, const int w, std::string rel = ".#") { std::vector<std::string> s(h); std::vector id(h, std::vector<int>(w, -1)); std::vector<std::pair<int, int>> loc; int n = 0; for (int i = 0; i < h; i++) { std::cin >> s[i]; for (int j = 0; j < w; j++) { if (s[i][j] == rel[1]) { id[i][j] = n++; loc.emplace_back(i, j); } } } int m = 0; Graph<int> g(n); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { if (s[i][j] == rel[1]) { if (i + 1 < h and s[i + 1][j] == rel[1]) { g[id[i][j]].push_back(Edge(id[i][j], id[i + 1][j], 1, m)); g[id[i + 1][j]].push_back(Edge(id[i + 1][j], id[i][j], 1, m++)); } if (j + 1 < w and s[i][j + 1] == rel[1]) { g[id[i][j]].push_back(Edge(id[i][j], id[i][j + 1], 1, m)); g[id[i][j + 1]].push_back(Edge(id[i][j + 1], id[i][j], 1, m++)); } } } } return {g, id, loc}; } template <class T> std::tuple<std::vector<T>, std::vector<int>, std::vector<int>> // dijkstra(Graph<T>& g, std::vector<int>& s, const T INF) { const int n = (int)(g.size()); std::vector<T> dist(n, INF); std::vector<int> par(n, -1), root(n, -1); std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>> que; for (auto& v : s) { dist[v] = 0; root[v] = v; que.emplace(T(0), v); } while (!que.empty()) { auto [d, v] = que.top(); que.pop(); if (dist[v] != d) continue; // dist[v] < d for (auto& e : g[v]) { if (dist[e.to] > d + e.cost) { dist[e.to] = d + e.cost; root[e.to] = root[v]; par[e.to] = v; que.emplace(dist[e.to], e.to); } } } return {dist, par, root}; } using namespace std; void solve() { I64(N, M, L, S, E); auto g = read_graph<i64>(N, M, true); VEC(int, T, L); vector<int> hast(N); REP(i, L) hast[T[i] - 1] = 1; // dist[i][j] = 頂点 i にいて, j = 0 のときトイレをしていない, j = 1 のときトイレをしている vector dist(N, vector<i64>(2, INF<i64>)); dist[0][0] = 0; using tp = tuple<i64, int, int>; pqueg<tp> que; que.emplace(0, 0, 0); while (!que.empty()) { auto [d, v, state] = que.top(); show(d); show(v); show(state); que.pop(); if (dist[v][state] != d) continue; if (state == 0 and d < S + E and hast[v]) { // トイレに行く if (chmin(dist[v][1], max(dist[v][0], S) + 1)) { que.emplace(dist[v][1], v, 1); } } FORE(e, g[v]) { show(e.to); if (chmin(dist[e.to][state], dist[v][state] + e.cost)) { que.emplace(dist[e.to][state], e.to, state); } } } i64 ans = dist[N - 1][1]; if (ans == INF<i64>) ans = -1; print(ans); return; } int main() { solve(); return 0; }