結果
| 問題 |
No.2806 Cornflake Man
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-07-12 22:13:25 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,915 bytes |
| コンパイル時間 | 7,664 ms |
| コンパイル使用メモリ | 337,112 KB |
| 実行使用メモリ | 21,292 KB |
| 最終ジャッジ日時 | 2024-07-12 22:13:51 |
| 合計ジャッジ時間 | 24,694 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | AC * 15 TLE * 1 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); }
istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }
istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); }
typedef long long ll;
typedef vector<vector<int>> Graph;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define FOR(i,l,r) for (int i = l;i < (int)(r); i++)
#define rep(i,n) for (int i = 0;i < (int)(n); i++)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define my_sort(x) sort(x.begin(), x.end())
#define my_max(x) *max_element(all(x))
#define my_min(x) *min_element(all(x))
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
const int INF = (1<<30) - 1;
const ll LINF = (1LL<<62) - 1;
const int MOD = 998244353;
const int MOD2 = 1e9+7;
const double PI = acos(-1);
vector<int> di = {1,0,-1,0};
vector<int> dj = {0,1,0,-1};
#ifdef LOCAL
# include <debug_print.hpp>
# define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
# define debug(...) (static_cast<void>(0))
#endif
// https://algo-method.com/tasks/553/editorial
// Miller-Rabin 素数判定法
template<class T> T pow_mod(T A, T N, T M) {
T res = 1 % M;
A %= M;
while (N) {
if (N & 1) res = (res * A) % M;
A = (A * A) % M;
N >>= 1;
}
return res;
}
bool is_prime(long long N) {
if (N <= 1) return false;
if (N == 2 || N == 3) return true;
if (N % 2 == 0) return false;
vector<long long> A = {2, 325, 9375, 28178, 450775,
9780504, 1795265022};
long long s = 0, d = N - 1;
while (d % 2 == 0) {
++s;
d >>= 1;
}
for (auto a : A) {
if (a % N == 0) return true;
long long t, x = pow_mod<__int128_t>(a, d, N);
if (x != 1) {
for (t = 0; t < s; ++t) {
if (x == N - 1) break;
x = __int128_t(x) * x % N;
}
if (t == s) return false;
}
}
return true;
}
// Pollard のロー法
long long gcd(long long A, long long B) {
A = abs(A), B = abs(B);
if (B == 0) return A;
else return gcd(B, A % B);
}
long long pollard(long long N) {
if (N % 2 == 0) return 2;
if (is_prime(N)) return N;
auto f = [&](long long x) -> long long {
return (__int128_t(x) * x + 1) % N;
};
long long step = 0;
while (true) {
++step;
long long x = step, y = f(x);
while (true) {
long long p = gcd(y - x + N, N);
if (p == 0 || p == N) break;
if (p != 1) return p;
x = f(x);
y = f(f(y));
}
}
}
vector<long long> prime_factorize(long long N) {
if (N == 1) return {};
long long p = pollard(N);
if (p == N) return {p};
vector<long long> left = prime_factorize(p);
vector<long long> right = prime_factorize(N / p);
left.insert(left.end(), right.begin(), right.end());
sort(left.begin(), left.end());
return left;
}
vector<int> make_divisors(int x){
vector<int> ans = {1};
unordered_map<int, int> mp;
for(auto &p : prime_factorize(x)) mp[p]++;
for(auto itr = mp.begin(); itr != mp.end(); itr++){
auto [p, e] = *itr;
int s = ans.size();
for(int i=0;i<s;i++){
int v = 1;
for(int j=0;j<e;j++){
v *= p;
ans.emplace_back(ans[i] * v);
}
}
}
sort(all(ans));
return ans;
}
int main(){
cin.tie(0);
ios_base::sync_with_stdio(false);
int N, M; cin >> N >> M;
vector<int> A(N);
rep(i, N) cin >> A[i];
sort(all(A));
debug(A);
unordered_map<int, int> mp;
mp[A[1]] = 1;
vector<int> ans = {A[1]};
FOR(i, 2, N){
bool f = true;
for(auto &d : make_divisors(A[i])){
if(ans.back() < d) break;
if(mp.count(d)){
mp[d]++;
f = false;
}
}
if(f) {
ans.emplace_back(A[i]);
mp[A[i]] = 1;
}
}
for(auto itr = mp.begin(); itr != mp.end(); itr++){
auto [d, e] = *itr;
if(M / d != e){
cout << -1 << endl;
return 0;
}
}
cout << (int)ans.size() << endl;
rep(i, (int)ans.size()) cout << ans[i] << (i == (int)ans.size() - 1 ? "\n" : " ");
}