結果

問題 No.2806 Cornflake Man
ユーザー pitPpitP
提出日時 2024-07-12 22:16:38
言語 C++23(gcc13)
(gcc 13.2.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,175 bytes
コンパイル時間 7,278 ms
コンパイル使用メモリ 337,796 KB
実行使用メモリ 21,216 KB
最終ジャッジ日時 2024-07-12 22:17:01
合計ジャッジ時間 20,613 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,443 ms
16,052 KB
testcase_01 AC 59 ms
6,812 KB
testcase_02 AC 277 ms
6,940 KB
testcase_03 AC 56 ms
6,940 KB
testcase_04 AC 296 ms
6,940 KB
testcase_05 AC 12 ms
6,944 KB
testcase_06 AC 868 ms
6,940 KB
testcase_07 AC 87 ms
6,944 KB
testcase_08 AC 825 ms
6,944 KB
testcase_09 AC 41 ms
6,944 KB
testcase_10 AC 675 ms
6,940 KB
testcase_11 AC 81 ms
6,940 KB
testcase_12 AC 884 ms
6,940 KB
testcase_13 AC 1,855 ms
7,288 KB
testcase_14 AC 321 ms
6,944 KB
testcase_15 TLE -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); }
istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }
istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } 

typedef long long ll;
typedef vector<vector<int>> Graph;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define FOR(i,l,r) for (int i = l;i < (int)(r); i++)
#define rep(i,n) for (int i = 0;i < (int)(n); i++)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define my_sort(x) sort(x.begin(), x.end())
#define my_max(x) *max_element(all(x))
#define my_min(x) *min_element(all(x))
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
const int INF = (1<<30) - 1;
const ll LINF = (1LL<<62) - 1;
const int MOD = 998244353;
const int MOD2 = 1e9+7;
const double PI = acos(-1);
vector<int> di = {1,0,-1,0};
vector<int> dj = {0,1,0,-1};

#ifdef LOCAL
#  include <debug_print.hpp>
#  define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#  define debug(...) (static_cast<void>(0))
#endif

// https://algo-method.com/tasks/553/editorial
// Miller-Rabin 素数判定法
template<class T> T pow_mod(T A, T N, T M) {
    T res = 1 % M;
    A %= M;
    while (N) {
        if (N & 1) res = (res * A) % M;
        A = (A * A) % M;
        N >>= 1;
    }
    return res;
}

bool is_prime(long long N) {
    if (N <= 1) return false;
    if (N == 2 || N == 3) return true;
    if (N % 2 == 0) return false;
    vector<long long> A = {2, 325, 9375, 28178, 450775,
                           9780504, 1795265022};
    long long s = 0, d = N - 1;
    while (d % 2 == 0) {
        ++s;
        d >>= 1;
    }
    for (auto a : A) {
        if (a % N == 0) return true;
        long long t, x = pow_mod<__int128_t>(a, d, N);
        if (x != 1) {
            for (t = 0; t < s; ++t) {
                if (x == N - 1) break;
                x = __int128_t(x) * x % N;
            }
            if (t == s) return false;
        }
    }
    return true;
}

// Pollard のロー法
long long gcd(long long A, long long B) {
    A = abs(A), B = abs(B);
    if (B == 0) return A;
    else return gcd(B, A % B);
}
    
long long pollard(long long N) {
    if (N % 2 == 0) return 2;
    if (is_prime(N)) return N;

    auto f = [&](long long x) -> long long {
        return (__int128_t(x) * x + 1) % N;
    };
    long long step = 0;
    while (true) {
        ++step;
        long long x = step, y = f(x);
        while (true) {
            long long p = gcd(y - x + N, N);
            if (p == 0 || p == N) break;
            if (p != 1) return p;
            x = f(x);
            y = f(f(y));
        }
    }
}

vector<long long> prime_factorize(long long N) {
    if (N == 1) return {};
    long long p = pollard(N);
    if (p == N) return {p};
    vector<long long> left = prime_factorize(p);
    vector<long long> right = prime_factorize(N / p);
    left.insert(left.end(), right.begin(), right.end());
    sort(left.begin(), left.end());
    return left;
}

vector<int> make_divisors(int x){
    vector<int> ans = {1};

    unordered_map<int, int> mp;
    for(auto &p : prime_factorize(x)) mp[p]++;

    for(auto itr = mp.begin(); itr != mp.end(); itr++){
        auto [p, e] = *itr;
        int s = ans.size();
        for(int i=0;i<s;i++){
            int v = 1;
            for(int j=0;j<e;j++){
                v *= p;
                ans.emplace_back(ans[i] * v);
            }
        }
    }
    sort(all(ans));
    return ans;
}

int main(){
    cin.tie(0);
    ios_base::sync_with_stdio(false);
    int N, M; cin >> N >> M;
    vector<int> A(N);
    rep(i, N) cin >> A[i];
    sort(all(A));
    debug(A);

    unordered_map<int, int> mp;
    mp[A[1]] = 1;
    vector<int> ans = {A[1]};
    FOR(i, 2, N){
        bool f = true;

        if((int)ans.size() < 333){
            for(auto &p : ans){
                if((A[i] % p) == 0) {
                    f = false;
                    mp[p]++;
                }
            }
        }
        else{
            for(auto &d : make_divisors(A[i])){
                if(ans.back() < d) break;
                if(mp.count(d)){
                    mp[d]++;
                    f = false;
                }
            }
        }

        if(f) {
            ans.emplace_back(A[i]);
            mp[A[i]] = 1;
        }
    }

    for(auto itr = mp.begin(); itr != mp.end(); itr++){
        auto [d, e] = *itr;
        if(M / d != e){
            cout << -1 << endl;
            return 0;
        }
    }

    cout << (int)ans.size() << endl;
    rep(i, (int)ans.size()) cout << ans[i] << (i == (int)ans.size() - 1 ? "\n" : " ");
}
0