結果

問題 No.2810 Have Another Go (Hard)
ユーザー tokusakurai
提出日時 2024-07-12 22:46:53
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,613 ms / 3,000 ms
コード長 13,978 bytes
コンパイル時間 2,609 ms
コンパイル使用メモリ 215,148 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-12 22:48:31
合計ジャッジ時間 96,352 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 61
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n) - 1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r) - 1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
void err_print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cerr << v[i] + x << ' ';
cerr << endl;
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
int n = a.size();
vector<T> b(n);
for (int i = 0; i < n; i++) b[i] = a[ord[i]];
swap(a, b);
}
template <typename T>
T floor(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? x / y : (x - y + 1) / y);
}
template <typename T>
T ceil(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? (x + y - 1) / y : x / y);
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(15);
}
} io_setup;
constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template <typename T, bool is_float = false>
struct Matrix {
vector<vector<T>> A;
int n, m;
Matrix() = default;
Matrix(int n) : A(n, vector<T>(n, 0)), n(n), m(n) {}
Matrix(int n, int m) : A(n, vector<T>(m, 0)), n(n), m(m) {}
Matrix(const vector<vector<T>> &A) : A(A), n((int)A.size()), m(A.empty() ? 0 : (int)A[0].size()) {}
inline const vector<T> &operator[](int k) const { return A[k]; }
inline vector<T> &operator[](int k) { return A[k]; }
static Matrix I(int l) {
Matrix ret(l, l);
for (int i = 0; i < l; i++) ret[i][i] = 1;
return ret;
}
Matrix &operator+=(const Matrix &B) {
assert(n == B.n && m == B.m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) A[i][j] += B[i][j];
}
return *this;
}
Matrix &operator-=(const Matrix &B) {
assert(n == B.n && m == B.m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) A[i][j] -= B[i][j];
}
return *this;
}
Matrix &operator*=(const Matrix &B) {
assert(m == B.n);
Matrix ret(n, B.m);
for (int i = 0; i < n; i++) {
for (int k = 0; k < m; k++) {
for (int j = 0; j < B.m; j++) ret[i][j] += A[i][k] * B[k][j];
}
}
swap(A, ret.A);
m = B.m;
return *this;
}
Matrix &operator/=(const Matrix &B) {
*this *= B.inverse();
return *this;
}
Matrix operator-() const {
Matrix ret(n, m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) ret[i][j] = -A[i][j];
}
return ret;
}
Matrix operator+(const Matrix &B) const { return Matrix(*this) += B; }
Matrix operator-(const Matrix &B) const { return Matrix(*this) -= B; }
Matrix operator*(const Matrix &B) const { return Matrix(*this) *= B; }
Matrix operator/(const Matrix &B) const { return Matrix(*this) /= B; }
bool operator==(const Matrix &B) const { return A == B.A; }
bool operator!=(const Matrix &B) const { return A != B.A; }
Matrix pow(long long k) const {
assert(n == m);
Matrix now = *this, ret = I(n);
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
Matrix transpose() const {
Matrix ret(m, n);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) ret[j][i] = A[i][j];
}
return ret;
}
Matrix submatrix(vector<int> rs, vector<int> cs) {
int sub_n = rs.size(), sub_m = cs.size();
Matrix ret(sub_n, sub_m);
for (int i = 0; i < sub_n; i++) {
for (int j = 0; j < sub_m; j++) ret[i][j] = A[rs[i]][cs[j]];
}
return ret;
}
Matrix submatrix(int lr, int rr, int lc, int rc) {
assert(0 <= lr && lr <= rr && rr <= n);
assert(0 <= lc && lc <= rc && rc <= m);
int sub_n = rr - lr, sub_m = rc - lc;
Matrix ret(sub_n, sub_m);
for (int i = 0; i < sub_n; i++) {
for (int j = 0; j < sub_m; j++) ret[i][j] = A[lr + i][lc + j];
}
return ret;
}
static bool eq(const T &a, const T &b) {
if constexpr (is_float) return abs(a - b) <= 1e-6;
return a == b;
}
int get_pivot(int j, int i) {
int pivot = i;
for (int k = i + 1; k < n; k++) {
if constexpr (is_float) {
if (abs(A[k][j]) > abs(A[pivot][j])) pivot = k;
} else {
if (A[k][j] != 0) pivot = k;
}
}
return pivot;
}
// (rank, det)
pair<int, T> row_reduction(vector<T> &b) {
assert((int)b.size() == n);
if (n == 0) return make_pair(0, m > 0 ? 0 : 1);
int check = 0, rank = 0;
T det = (n == m ? 1 : 0);
for (int j = 0; j < m; j++) {
int pivot = get_pivot(j, check);
if (check != pivot) det = -det;
swap(A[check], A[pivot]), swap(b[check], b[pivot]);
if (eq(A[check][j], T(0))) {
det = T(0);
continue;
}
rank++;
det *= A[check][j];
T r = T(1) / A[check][j];
for (int k = j + 1; k < m; k++) A[check][k] *= r;
b[check] *= r;
A[check][j] = T(1);
for (int i = 0; i < n; i++) {
if (i == check) continue;
if (!eq(A[i][j], 0)) {
for (int k = j + 1; k < m; k++) A[i][k] -= A[i][j] * A[check][k];
b[i] -= A[i][j] * b[check];
}
A[i][j] = T(0);
}
if (++check == n) break;
}
return make_pair(rank, det);
}
pair<int, T> row_reduction() {
vector<T> b(n, T(0));
return row_reduction(b);
}
int rank() const { return Matrix(*this).row_reduction().first; }
T determinant() const {
assert(n == m);
return Matrix(*this).row_reduction().second;
}
pair<bool, Matrix> inverse() {
if (n != m) return make_pair(false, Matrix(0, 0));
if (n == 0) return make_pair(true, Matrix(0, 0));
vector<vector<T>> A_cpy = A;
Matrix ret = I(n);
for (int j = 0; j < n; j++) {
int pivot = get_pivot(j, j);
swap(A[j], A[pivot]), swap(ret[j], ret[pivot]);
if (eq(A[j][j], T(0))) return make_pair(false, Matrix(0, 0));
T r = T(1) / A[j][j];
for (int k = j + 1; k < n; k++) A[j][k] *= r;
for (int k = 0; k < n; k++) ret[j][k] *= r;
A[j][j] = T(1);
for (int i = 0; i < n; i++) {
if (i == j) continue;
if (!eq(A[i][j], T(0))) {
for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[j][k];
for (int k = 0; k < n; k++) ret[i][k] -= A[i][j] * ret[j][k];
}
A[i][j] = T(0);
}
}
A = A_cpy;
return make_pair(true, ret);
}
};
using mat = Matrix<mint>;
void solve() {
ll N, M, Q;
cin >> N >> M >> Q;
auto calc = [&](ll n) {
if (n < 0) return mint(0);
mat A(6, 6);
rep(j, 6) A[j][0] = 1;
rep(i, 5) A[i][i + 1] = 1;
mat x(1, 6);
x[0][0] = 1;
x *= A.pow(n);
return x[0][0];
};
// n-5 n
auto calc_range = [&](ll n) {
if (n < 0) return vector<mint>(6, 0);
mat A(6, 6);
rep(j, 6) A[j][0] = 1;
rep(i, 5) A[i][i + 1] = 1;
mat x(1, 6);
x[0][0] = 1;
x *= A.pow(n);
vector<mint> ret(6, 0);
rep(i, 6) ret[i] = x[0][i];
reverse(all(ret));
return ret;
};
// n
auto calc2 = [&](ll n) {
if (n <= 0) return mint(1);
auto v = calc_range(n - 1);
mint sum = 0;
rep(i, 6) sum += v[i] * (i + 1);
return sum;
};
mat A(5, 5);
rep(i, 5) rep(j, 5) {
rep2(k, 1, 7) {
if (i + k <= 5) continue;
A[i][j] += calc(N + j - (i + k));
}
}
// rep(i, 5) print(A[i]);
A = A.pow(M - 1);
mint sum = calc2(N * M);
// rep(i, 20) cout << calc(i) << endl;
while (Q--) {
ll y;
cin >> y;
mat x(1, 5);
{
auto v = calc_range(y - 1);
rep(i, 5) x[0][i] = v[i + 1];
}
x *= A;
mint ans = sum;
rep(i, 5) {
rep2(k, 1, 7) {
if (i + k <= 5) continue;
ll z = y - 5 + i + k;
ans -= x[0][i] * calc2(N - z);
}
}
cout << ans << '\n';
}
}
int main() {
int T = 1;
// cin >> T;
while (T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0