結果

問題 No.2810 Have Another Go (Hard)
ユーザー siganaisiganai
提出日時 2024-07-12 23:30:37
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 335 ms / 3,000 ms
コード長 11,017 bytes
コンパイル時間 2,565 ms
コンパイル使用メモリ 215,680 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-12 23:30:54
合計ジャッジ時間 15,128 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 291 ms
6,944 KB
testcase_02 AC 290 ms
6,948 KB
testcase_03 AC 292 ms
6,940 KB
testcase_04 AC 303 ms
6,940 KB
testcase_05 AC 289 ms
6,944 KB
testcase_06 AC 294 ms
6,940 KB
testcase_07 AC 300 ms
6,944 KB
testcase_08 AC 335 ms
6,940 KB
testcase_09 AC 289 ms
6,940 KB
testcase_10 AC 287 ms
6,944 KB
testcase_11 AC 3 ms
6,944 KB
testcase_12 AC 4 ms
6,940 KB
testcase_13 AC 2 ms
6,948 KB
testcase_14 AC 4 ms
6,944 KB
testcase_15 AC 3 ms
6,940 KB
testcase_16 AC 65 ms
6,940 KB
testcase_17 AC 263 ms
6,940 KB
testcase_18 AC 186 ms
6,944 KB
testcase_19 AC 269 ms
6,940 KB
testcase_20 AC 38 ms
6,944 KB
testcase_21 AC 88 ms
6,940 KB
testcase_22 AC 167 ms
6,940 KB
testcase_23 AC 112 ms
6,940 KB
testcase_24 AC 181 ms
6,944 KB
testcase_25 AC 306 ms
6,940 KB
testcase_26 AC 289 ms
6,940 KB
testcase_27 AC 296 ms
6,940 KB
testcase_28 AC 290 ms
6,940 KB
testcase_29 AC 314 ms
6,944 KB
testcase_30 AC 290 ms
6,940 KB
testcase_31 AC 293 ms
6,940 KB
testcase_32 AC 290 ms
6,940 KB
testcase_33 AC 320 ms
6,940 KB
testcase_34 AC 298 ms
6,944 KB
testcase_35 AC 292 ms
6,940 KB
testcase_36 AC 297 ms
6,940 KB
testcase_37 AC 310 ms
6,940 KB
testcase_38 AC 287 ms
6,944 KB
testcase_39 AC 294 ms
6,940 KB
testcase_40 AC 295 ms
6,940 KB
testcase_41 AC 319 ms
6,940 KB
testcase_42 AC 299 ms
6,944 KB
testcase_43 AC 301 ms
6,940 KB
testcase_44 AC 293 ms
6,940 KB
testcase_45 AC 326 ms
6,944 KB
testcase_46 AC 2 ms
6,940 KB
testcase_47 AC 2 ms
6,940 KB
testcase_48 AC 3 ms
6,944 KB
testcase_49 AC 3 ms
6,940 KB
testcase_50 AC 2 ms
6,944 KB
testcase_51 AC 15 ms
6,940 KB
testcase_52 AC 9 ms
6,940 KB
testcase_53 AC 20 ms
6,940 KB
testcase_54 AC 23 ms
6,944 KB
testcase_55 AC 10 ms
6,940 KB
testcase_56 AC 22 ms
6,944 KB
testcase_57 AC 17 ms
6,940 KB
testcase_58 AC 16 ms
6,940 KB
testcase_59 AC 29 ms
6,944 KB
testcase_60 AC 21 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "test.cpp"
#include<bits/stdc++.h>
//#pragma GCC target("avx,avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll,ll>;
using pii = pair<int,int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vul = vector<ull>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T,vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
bool is_clamp(ll val,ll low,ll high) {return low <= val && val < high;}
void Yes() {cout << "Yes\n";return;}
void No() {cout << "No\n";return;}
void YES() {cout << "YES\n";return;}
void NO() {cout << "NO\n";return;}
template <typename T>
T floor(T a, T b) {return a / b - (a % b && (a ^ b) < 0);}
template <typename T>
T ceil(T x, T y) {return floor(x + y - 1, y);}
template <typename T>
T bmod(T x, T y) {return x - y * floor(x, y);}
template <typename T>
pair<T, T> divmod(T x, T y) {T q = floor(x, y);return {q, x - q * y};}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(12);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});} 
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }

#undef unpack
constexpr long double PI = 3.141592653589793238462643383279L;
template <class F> struct REC {
    F f;
    REC(F &&f_) : f(forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};

constexpr int mod = 998244353;
//constexpr int mod = 1000000007;
#line 2 "library/modint/Modint.hpp"
template <int mod>
struct Modint{
    int x;
    Modint():x(0) {}
    Modint(long long y): x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
    Modint &operator += (const Modint &p) {
        if((x += p.x) >= mod) x -= mod;
        return *this;}
    Modint &operator -= (const Modint &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;}
    Modint &operator *= (const Modint &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;}
    Modint &operator /= (const Modint &p) {
        *this *= p.inverse();
        return *this;}
    Modint operator -() const{return Modint(-x);}
    Modint operator +(const Modint &p) const {return Modint(*this) += p;}
    Modint operator -(const Modint &p) const {return Modint(*this) -= p;}
    Modint operator *(const Modint &p) const {return Modint(*this) *= p;}
    Modint operator /(const Modint &p) const {return Modint(*this) /= p;}
    Modint &operator ++() {if(x == mod - 1) x = 0; else x++; return *this;}
    Modint &operator --() {if(x == 0) x = mod - 1; else x--; return *this;} 
    bool operator == (const Modint &p) const {return x == p.x;}
    bool operator != (const Modint &p) const {return x != p.x;}
    Modint inverse() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return Modint(u);}
    Modint pow(long long n) const {
        Modint ret(1), mul(x);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;}
    friend ostream &operator<<(ostream &os, const Modint &p) { return os << p.x; }
    friend istream &operator>>(istream &is, Modint &a) {
        long long t;
        is >> t;
        a = Modint<mod>(t);
        return (is);
    }
    int get() const { return x; }
    static constexpr int get_mod() {return mod;}
};
#line 100 "test.cpp"
using mint = Modint<mod>;
using vm = vector<mint>;
using vvm = vector<vm>;
using vvvm = vector<vvm>;
#line 2 "library/matrix/matrix.hpp"
template <class T>
struct Matrix {
    vector<vector<T>> A;
    Matrix() = default;
    Matrix(int n, int m) : A(n, vector<T>(m, T())) {}
    Matrix(int n) : A(n, vector<T>(n, T())){};
    int H() const { return A.size(); }
    int W() const { return A[0].size(); }
    int size() const { return A.size(); }
    inline const vector<T> &operator[](int k) const { return A[k]; }
    inline vector<T> &operator[](int k) { return A[k]; }
    static Matrix I(int n) {
        Matrix mat(n);
        for (int i = 0; i < n; i++) mat[i][i] = 1;
        return (mat);
    }
    Matrix &operator+=(const Matrix &B) {
        int n = H(), m = W();
        assert(n == B.H() && m == B.W());
        for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
        return (*this);
    }
    Matrix &operator-=(const Matrix &B) {
        int n = H(), m = W();
        assert(n == B.H() && m == B.W());
        for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
        return (*this);
    }
    Matrix &operator*=(const Matrix &B) {
        int n = H(), m = B.W(), p = W();
        assert(p == B.H());
        vector<vector<T>> C(n, vector<T>(m, T{}));
        for (int i = 0; i < n; i++) {
            for (int k = 0; k < p; k++) {
                if((*this)[i][k] == 0) continue;
                for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j];
            }
        }
        A.swap(C);
        return (*this);
    }
    Matrix &operator^=(long long k) {
        Matrix B = Matrix::I(H());
        while (k > 0) {
            if (k & 1) B *= *this;
            *this *= *this;
            k >>= 1LL;
        }
        A.swap(B.A);
        return (*this);
    }
    Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
    Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
    Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
    Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
    bool operator==(const Matrix &B) const {
        assert(H() == B.H() && W() == B.W());
        for (int i = 0; i < H(); i++) for (int j = 0; j < W(); j++) {
            if (A[i][j] != B[i][j]) return false;
        }
        return true;
    }
    bool operator!=(const Matrix &B) const {
        assert(H() == B.H() && W() == B.W());
        for (int i = 0; i < H(); i++) for (int j = 0; j < W(); j++) {
            if (A[i][j] != B[i][j]) return true;
        }
        return false;
    }
    friend ostream &operator<<(ostream &os, const Matrix &p) {
        int n = p.H(), m = p.W();
        for (int i = 0; i < n; i++) {
            os << (i ? "   " : "") << "[";
            for (int j = 0; j < m; j++) {
                os << p[i][j] << (j + 1 == m ? "]\n" : ",");
            }
        }
        return (os);
    }
    T determinant() const {
        Matrix B(*this);
        assert(H() == W());
        T ret = 1;
        for (int i = 0; i < H(); i++) {
            int idx = -1;
            for (int j = i; j < W(); j++) {
                if (B[j][i] != 0) {
                    idx = j;
                    break;
                }
            }
            if (idx == -1) return 0;
            if (i != idx) {
                ret *= T(-1);
                swap(B[i], B[idx]);
            }
            ret *= B[i][i];
            T inv = T(1) / B[i][i];
            for (int j = 0; j < W(); j++) {
                B[i][j] *= inv;
            }
            for (int j = i + 1; j < H(); j++) {
                T a = B[j][i];
                if (a == 0) continue;
                for (int k = i; k < W(); k++) {
                    B[j][k] -= B[i][k] * a;
                }
            }
        }
        return ret;
    }
};
#line 105 "test.cpp"
using mat = Matrix<mint>;
int main() {
    INT(n,m,k);
    mat P(6);
    rep(i,6) P[0][i] = 1;
    rep(i,1,6) P[i][i-1] = 1;
    mat X = P ^ (1LL * n * m - 1);
    mint su = 0;
    rep(i,6) {
        su += X[i][0] * (6 - i);
    }
    mat Q(6);
    rep(i,1,6) Q[i][i-1] = 1;
    mat W = (P ^ (n - 1)) * Q;
    W ^= m - 1;
    rep(i,k) {
        INT(c);
        mat R = P ^ (c - 1);
        R = W * R;
        R = Q * R;
        R = (P ^ (n - c - 1)) * R;
        mint tmp;
        rep(j,6) tmp += R[j][0] * (6 - j);
        cout << su - tmp << '\n';
    }
}  
0