結果

問題 No.2809 Sort Query
ユーザー ecotteaecottea
提出日時 2024-07-13 17:28:45
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 375 ms / 2,000 ms
コード長 14,087 bytes
コンパイル時間 5,102 ms
コンパイル使用メモリ 273,408 KB
実行使用メモリ 23,988 KB
最終ジャッジ日時 2024-07-13 17:29:22
合計ジャッジ時間 33,505 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 264 ms
19,868 KB
testcase_02 AC 268 ms
19,356 KB
testcase_03 AC 296 ms
19,320 KB
testcase_04 AC 260 ms
19,344 KB
testcase_05 AC 261 ms
19,468 KB
testcase_06 AC 185 ms
18,076 KB
testcase_07 AC 182 ms
18,304 KB
testcase_08 AC 208 ms
18,248 KB
testcase_09 AC 186 ms
18,856 KB
testcase_10 AC 185 ms
18,168 KB
testcase_11 AC 217 ms
21,656 KB
testcase_12 AC 212 ms
21,668 KB
testcase_13 AC 220 ms
21,676 KB
testcase_14 AC 218 ms
21,684 KB
testcase_15 AC 217 ms
21,648 KB
testcase_16 AC 217 ms
21,680 KB
testcase_17 AC 221 ms
21,808 KB
testcase_18 AC 220 ms
21,676 KB
testcase_19 AC 218 ms
21,676 KB
testcase_20 AC 216 ms
21,552 KB
testcase_21 AC 369 ms
23,852 KB
testcase_22 AC 374 ms
23,856 KB
testcase_23 AC 375 ms
23,980 KB
testcase_24 AC 369 ms
23,988 KB
testcase_25 AC 366 ms
23,984 KB
testcase_26 AC 353 ms
20,528 KB
testcase_27 AC 329 ms
20,696 KB
testcase_28 AC 327 ms
20,552 KB
testcase_29 AC 353 ms
20,660 KB
testcase_30 AC 329 ms
20,660 KB
testcase_31 AC 174 ms
18,860 KB
testcase_32 AC 175 ms
18,736 KB
testcase_33 AC 178 ms
18,864 KB
testcase_34 AC 173 ms
18,608 KB
testcase_35 AC 176 ms
18,864 KB
testcase_36 AC 189 ms
21,684 KB
testcase_37 AC 188 ms
21,652 KB
testcase_38 AC 192 ms
21,680 KB
testcase_39 AC 188 ms
21,648 KB
testcase_40 AC 186 ms
21,680 KB
testcase_41 AC 319 ms
15,896 KB
testcase_42 AC 315 ms
15,900 KB
testcase_43 AC 322 ms
16,024 KB
testcase_44 AC 316 ms
16,024 KB
testcase_45 AC 334 ms
16,024 KB
testcase_46 AC 256 ms
15,896 KB
testcase_47 AC 259 ms
16,024 KB
testcase_48 AC 295 ms
16,024 KB
testcase_49 AC 261 ms
15,896 KB
testcase_50 AC 261 ms
15,892 KB
testcase_51 AC 170 ms
16,024 KB
testcase_52 AC 192 ms
16,020 KB
testcase_53 AC 174 ms
16,020 KB
testcase_54 AC 172 ms
15,896 KB
testcase_55 AC 173 ms
16,028 KB
testcase_56 AC 238 ms
13,608 KB
testcase_57 AC 172 ms
11,404 KB
testcase_58 AC 160 ms
11,848 KB
testcase_59 AC 182 ms
11,296 KB
testcase_60 AC 185 ms
13,904 KB
testcase_61 AC 260 ms
17,200 KB
testcase_62 AC 170 ms
11,968 KB
testcase_63 AC 224 ms
14,232 KB
testcase_64 AC 276 ms
18,280 KB
testcase_65 AC 151 ms
12,420 KB
testcase_66 AC 2 ms
5,376 KB
testcase_67 AC 2 ms
5,376 KB
testcase_68 AC 2 ms
5,376 KB
testcase_69 AC 2 ms
5,376 KB
testcase_70 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = static_modint<1234567891>;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【フェニック木(アーベル群)】
/*
* Fenwick_tree<S, op, o, inv>(int n) : O(n)
*	a[0..n) = o() で初期化する.要素はアーベル群 (S, op, o, inv) の元とする.
*
* Fenwick_tree<S, op, o, inv>(vS a) : O(n)
*	配列 a[0..n) で初期化する.
*
* set(int i, S x) : O(log n)
*	a[i] = x とする.
*
* S get(int i) : O(log n)
*	a[i] を返す.
*
* S sum(int l, int r) : O(log n)
*	Σa[l..r) を返す.空なら o() を返す.
*
* add(int i, S x) : O(log n)
*	a[i] += x とする.
*
* int max_right(function<bool(S)>& f) : O(log n)
*	f( Σa[0..r) ) = true となる最大の r を返す.
*   制約:f( o() ) = true,f は単調
*/
template <class S, S(*op)(S, S), S(*o)(), S(*inv)(S)>
class Fenwick_tree {
	// 参考:https://algo-logic.info/binary-indexed-tree/

	// n : 要素数
	int n;

	// v[i] : Σa[*..i] の値(i:1-indexed,v[0] は不使用)
	vector<S> v;

	// Σa[1..r] を返す.空なら o() を返す.(r:1-indexed)
	S sum_sub(int r) const {
		S res = o();

		// 根に向かって累積 op() をとっていく.
		while (r > 0) {
			res = op(res, v[r]);

			// r の最下位ビットを 0 にすることで次の位置を得る.
			r -= r & -r;
		}
		return res;
	}

public:
	// a[0..n) = o() で初期化する.
	Fenwick_tree(int n) : n(n), v(n + 1, o()) {
		// verify : https://judge.yosupo.jp/problem/range_kth_smallest
	}

	// 配列 a[0..n) で初期化する.
	Fenwick_tree(const vector<S>& a) : n(sz(a)), v(n + 1) {
		// verify : https://judge.yosupo.jp/problem/point_add_range_sum

		// 配列の値を仮登録する.
		rep(i, n) v[i + 1] = a[i];

		// 正しい値になるよう根に向かって累積 op() をとっていく.
		for (int pow2 = 1; 2 * pow2 <= n; pow2 *= 2) {
			for (int i = 2 * pow2; i <= n; i += 2 * pow2) {
				v[i] = op(v[i], v[i - pow2]);
			}
		}
	}
	Fenwick_tree() : n(0) {}

	// a[i] = x とする.(i : 0-indexed)
	void set(int i, S x) {
		Assert(0 <= i && i < n);

		// 差分を求める.
		S d = op(x, inv(get(i)));

		add(i, d);
	}

	// a[i] を返す.(i : 0-indexed)
	S get(int i) const {
		Assert(0 <= i && i < n);

		return sum(i, i + 1);
	}

	// Σa[l..r) を返す.空なら o() を返す.(l, r : 0-indexed)
	S sum(int l, int r) const {
		// verify : https://judge.yosupo.jp/problem/point_add_range_sum

		chmax(l, 0); chmin(r, n);
		if (l >= r) return o();

		// 0-indexed での半開区間 [l, r) は,
		// 1-indexed での閉区間 [l + 1, r] に対応する.
		// よって閉区間 [1, r] の総和から閉区間 [1, l] の総和を引けば良い.
		return op(sum_sub(r), inv(sum_sub(l)));
	}

	// a[i] += x とする.(i : 0-indexed)
	void add(int i, S x) {
		// verify : https://judge.yosupo.jp/problem/point_add_range_sum

		Assert(0 <= i && i < n);

		// i を 1-indexed に直す.
		i++;

		// 根に向かって値を op() していく.
		while (i <= n) {
			v[i] = op(v[i], x);

			// i の最下位ビットに 1 を加算することで次の位置を得る.
			i += i & -i;
		}
	}

	// f( Σa[0..r) ) = true となる最大の r を返す.(r : 0-indexed)
	int max_right(const function<bool(S)>& f) const {
		// verify : https://www.spoj.com/problems/ALLIN1/

		S x = o();

		// 注目している閉区間は [l+1, r] で幅は len
		int l = 0;
		for (int len = 1 << msb(n); len > 0; len >>= 1) {
			int r = l + len;
			if (r > n) continue;

			auto nx = op(x, v[r]);
			if (f(nx)) {
				x = nx;
				l = r;
			}
		}
		return l;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Fenwick_tree& ft) {
		rep(i, ft.n) {
			os << ft.get(i) << " ";
		}
		return os;
	}
#endif
};


//【index 付き多重集合】
/*
* Multi_set<T>(int n) : O(n)
*	[0..n) を記録可能な辞書を空で初期化する.
*
* Multi_set<T>(int n, vi a) : O(n + |a|)
*	[0..n) を記録可能な辞書を多重集合 a で初期化する.
*
* T size() : O(log n)
*	要素の総数を返す.
*
* T count(int v) : O(log n)
*	要素 v の個数を返す.
*
* T count(int l, int r) : O(log n)
*	値 [l..r) をもつ要素の個数を返す.
*
* insert(int v, T k = 1) : O(log n)
*	要素 v を k 個挿入する.
*
* erase(int v, T k = 1) : O(log n)
*	要素 v を k 個削除する.個数は負数にもなる.
*
* int get(T i) : O(log n)
*	昇順で i 番目(0-indexed)の要素を返す.なければ n を返す.
*
* T lower_bound(int v) : O(log n)
*	v 以上の最小の要素が昇順で何番目(0-indexed)の要素かを返す.
*
* 利用:【フェニック木(アーベル群)】
*/
template <class T> T opdd(T x, T y) { return x + y; }
template <class T> T edd() { return 0; }
template <class T> T invdd(T x) { return -x; }
template <class T>
struct Multi_set {
	int n;

	// ft[v] : 要素 v の個数
	using RSQ = Fenwick_tree<T, opdd<T>, edd<T>, invdd<T>>;
	RSQ ft;

	// [0..n) を記録可能な辞書を空で初期化する.
	Multi_set(int n) : n(n), ft(n) {
		// verify : https://judge.yosupo.jp/problem/range_kth_smallest
	}

	// [0..n) を記録可能な辞書を多重集合 a で初期化する.
	Multi_set(int n, const vi& a) : n(n) {
		// verify : https://judge.yosupo.jp/problem/predecessor_problem

		vector<T> cnt(n);
		repe(v, a) cnt[v]++;
		ft = RSQ(cnt);
	}
	Multi_set() : n(0) {}

	// 要素の総数を返す.
	T size() { return ft.sum(0, n); }

	// 要素 v の個数を返す.
	T count(int v) {
		// verify : https://judge.yosupo.jp/problem/predecessor_problem

		return ft.get(v);
	}

	// 値 [l..r) をもつ要素の個数を返す.
	T count(int l, int r) { return ft.sum(l, r); }

	// 要素 v を k 個挿入する.
	void insert(int v, T k = 1) {
		// verify : https://judge.yosupo.jp/problem/predecessor_problem

		ft.add(v, k);
	}

	// 要素 v を k 個削除する.
	void erase(int v, T k = 1) {
		// verify : https://judge.yosupo.jp/problem/predecessor_problem

		ft.add(v, -k);
	}

	// 昇順で i 番目の要素を返す.
	int get(T i) {
		// verify : https://judge.yosupo.jp/problem/predecessor_problem

		auto f = [&](T x) { return x <= i; };
		return ft.max_right(f);
	}

	// v が昇順で何番目の要素かを返す.
	T lower_bound(int v) {
		// verify : https://judge.yosupo.jp/problem/predecessor_problem

		return ft.sum(0, v);
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Multi_set& dd) {
		rep(v, dd.n) rep(hoge, dd.ft.get(v)) os << v << " ";
		return os;
	}
#endif
};


//【座標圧縮】O(n log n)
/*
* a[0..n) を座標圧縮した結果を a_cp[0..n) に格納し,その値域の大きさを返す.
* また xs[j] に圧縮された座標 j に対応する元の座標を格納する.
*
* a に重複する要素がなければ,a_cp[i] は a[i] が昇順で何番目かを表し,
* xs[j] は昇順で j 番目の要素が何かを表す.
*/
template <class T>
int coordinate_compression(const vector<T>& a, vi& a_cp, vector<T>* xs = nullptr) {
	// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_o

	int n = sz(a);
	if (xs == nullptr) xs = new vector<T>;

	// *xs : a の x 座標のユニークな昇順列
	*xs = a;
	uniq(*xs);

	// a[i] が xs において何番目かを求める.
	a_cp.resize(n);
	rep(i, n) a_cp[i] = lbpos(*xs, a[i]);

	return sz(*xs);
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n, q;
	cin >> n >> q;

	vl a(n);
	cin >> a;

	vector<pii> qs(q);
	rep(j, q) {
		int tp;
		cin >> tp;

		if (tp == 1) {
			int k; ll x;
			cin >> k >> x;
			k--;

			qs[j] = { tp, k };
			a.push_back(x);
		}
		else if (tp == 2) {
			qs[j] = { tp, -1 };
		}
		else {
			int k;
			cin >> k;
			k--;

			qs[j] = { tp, k };
		}
	}

	vi a_cp; vl xs;
	int m = coordinate_compression(a, a_cp, &xs);
	dump(m); dump(a_cp); dump(xs);

	Multi_set<int> B(m);
	vi up(n, -1);
	vi pos;
	vi el;

	int pt = 0;
	rep(i, n) {
		up[i] = a_cp[pt++];
		pos.push_back(i);
	}

	rep(j, q) {
		auto [tp, k] = qs[j];
		dump("-------------- tp, k", tp, k, "------------------");

		if (tp == 1) {
			int x = a_cp[pt++];

			if (up[k] != -1) {
				up[k] = x;
			}
			else {
				el.push_back(B.get(k));
				up[k] = x;
				pos.push_back(k);
			}
		}
		else if (tp == 2) {
			repe(x, el) B.erase(x);
			repe(k, pos) {
				B.insert(up[k]);
				up[k] = -1;
			}
			el.clear();
			pos.clear();
		}
		else {
			int res = -1;
			if (up[k] != -1) {
				res = up[k];
			}
			else {
				res = B.get(k);
			}

			cout << xs[res] << "\n";
		}

		dump("B:", B);
		dump("up:", up);
		dump("el:", el);
		
		//rep(k, n) {
		//	int res = -1;
		//	if (up[k] != -1) {
		//		res = up[k];
		//	}
		//	else {
		//		res = B.get(k);
		//	}

		//	cout << xs[res] << " ";
		//}
		//cout << endl;
	}
}
0