結果
問題 | No.5007 Steiner Space Travel |
ユーザー | ra5anchor |
提出日時 | 2024-07-15 00:33:34 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 185 ms / 1,000 ms |
コード長 | 5,834 bytes |
コンパイル時間 | 268 ms |
コンパイル使用メモリ | 82,256 KB |
実行使用メモリ | 78,440 KB |
スコア | 7,471,823 |
最終ジャッジ日時 | 2024-07-15 00:33:41 |
合計ジャッジ時間 | 6,301 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
純コード判定しない問題か言語 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 125 ms
77,656 KB |
testcase_01 | AC | 138 ms
77,940 KB |
testcase_02 | AC | 110 ms
77,724 KB |
testcase_03 | AC | 185 ms
77,584 KB |
testcase_04 | AC | 150 ms
77,688 KB |
testcase_05 | AC | 115 ms
77,412 KB |
testcase_06 | AC | 123 ms
77,436 KB |
testcase_07 | AC | 120 ms
77,784 KB |
testcase_08 | AC | 115 ms
77,760 KB |
testcase_09 | AC | 118 ms
77,580 KB |
testcase_10 | AC | 115 ms
77,564 KB |
testcase_11 | AC | 144 ms
77,524 KB |
testcase_12 | AC | 131 ms
78,344 KB |
testcase_13 | AC | 116 ms
77,796 KB |
testcase_14 | AC | 134 ms
78,132 KB |
testcase_15 | AC | 118 ms
77,516 KB |
testcase_16 | AC | 116 ms
77,644 KB |
testcase_17 | AC | 119 ms
77,756 KB |
testcase_18 | AC | 120 ms
77,836 KB |
testcase_19 | AC | 135 ms
77,616 KB |
testcase_20 | AC | 118 ms
77,936 KB |
testcase_21 | AC | 120 ms
77,592 KB |
testcase_22 | AC | 120 ms
77,796 KB |
testcase_23 | AC | 121 ms
77,820 KB |
testcase_24 | AC | 124 ms
77,644 KB |
testcase_25 | AC | 133 ms
78,440 KB |
testcase_26 | AC | 117 ms
77,740 KB |
testcase_27 | AC | 143 ms
77,780 KB |
testcase_28 | AC | 120 ms
77,692 KB |
testcase_29 | AC | 119 ms
77,780 KB |
ソースコード
import random import sys # ユークリッド距離 def euclidean_distance(point1, point2): return sum((a - b) ** 2 for a, b in zip(point1, point2)) ** 0.5 # K-meansクラスタリング def initialize_centroids(points, k): return random.sample(points, k) def assign_clusters(points, centroids): clusters = [] for point in points: distances = [euclidean_distance(point, centroid) for centroid in centroids] cluster = distances.index(min(distances)) clusters.append(cluster) return clusters def update_centroids(points, clusters, k): new_centroids = [] for i in range(k): cluster_points = [points[j] for j in range(len(points)) if clusters[j] == i] if cluster_points: new_centroid = [sum(dim) / len(cluster_points) for dim in zip(*cluster_points)] new_centroids.append(tuple(new_centroid)) return new_centroids def kmeans(points, k, max_iters=100): centroids = initialize_centroids(points, k) for _ in range(max_iters): clusters = assign_clusters(points, centroids) new_centroids = update_centroids(points, clusters, k) if centroids == new_centroids: break centroids = new_centroids return clusters, centroids def HeldKarp(dists): N = len(dists) dp = [[10**18] * N for _ in range(2**N)] for i in range(N): dp[1<<i][i] = dists[0][i] for bit in range(1, 1<<N): for v in range(N): if not bit & (1<<v): continue for nv in range(N): if bit & (1<<nv) or dists[v][nv] == -1: continue dp[bit | (1<<nv)][nv] = min(dp[bit | (1<<nv)][nv], dp[bit][v] + dists[v][nv]) tot_dist = dp[(1<<N) - 1][0] now = 0 tour = [now] visited_bit = (1 << N) - 1 dist_sum = tot_dist EPS = 1e-5 for _ in range(N-1): visited_bit ^= (1 << now) for last_city in range(N): if last_city == now: continue if abs(dist_sum - dp[visited_bit][last_city] - dists[last_city][now]) < EPS: break else: assert(False) dist_sum -= dists[last_city][now] now = last_city tour.append(now) return tot_dist, tour ############## random.seed(0) ALPHA = 5 # 定数 N, M = map(int, input().split()) points = [] for i in range(N): x, y = map(int, input().split()) points.append((x, y)) # K-meansクラスタリングでM個のクラスに分類 labels, centroids = kmeans(points, M) stations = [] for x, y in centroids: ix, iy = int(x+0.5), int(y+0.5) stations.append((ix, iy)) # スタート地点のグループが0になるように回転 stt = labels[0] labels = [(x-stt)%M for x in labels] for _ in range(stt): z = stations.pop(0) stations.append(z) # print(labels) # print(stations) # グループごとにp, stationの座標を # ps[i], stations[i] ps = [[] for _ in range(M)] id_to_xy = dict() for i, (x, y) in enumerate(points): ps[labels[i]].append((x, y, i)) id_to_xy[i] = (x, y) # print(ps) # 最短巡回ルート dists = [[0]*M for _ in range(M)] for i in range(M): for j in range(M): dists[i][j] = euclidean_distance(stations[i], stations[j]) tot_dist, tour_grp = HeldKarp(dists) # print(tour_grp) [0, 2, 5, 3, 1, 7, 4, 6]とか # グループごとに解く tour = [] grp = 0 now = 0 tour.append((1, now+1)) # type, id x, y = id_to_xy[now] ps[grp].remove((x, y, now)) # リストから削除 for grp in tour_grp: stx, sty = stations[grp] # stationのx,y tour.append((2, grp+1)) # type, id while ps[grp]: mndist = 10**18 for x, y, id in ps[grp]: d = euclidean_distance(stations[grp], (x, y)) if d < mndist: mndist = d nxt = id tour.append((1, nxt+1)) x, y = id_to_xy[nxt] ps[grp].remove((x, y, nxt)) # リストから削除 nowx, nowy = x, y now = nxt while True: # 最も近い地点とその距離を調べる mndpp = 10**18 for x, y, id in ps[grp]: d = euclidean_distance((nowx, nowy), (x, y)) if d < mndist: mndpp = d nxt = id nxtx, nxty = id_to_xy[nxt] d1 = euclidean_distance(stations[grp], (nowx, nowy)) d2 = euclidean_distance(stations[grp], (nxtx, nxty)) if ALPHA * mndpp < d1 + d2: # 次の地点へ直接行く tour.append((1, nxt+1)) ps[grp].remove((nxtx, nxty, nxt)) # リストから削除 nowx, nowy = nxtx, nxty now = nxt else: break # ステーションに戻る tour.append((2, grp+1)) # type, id tour.append((2, 1)) tour.append((1, 1)) # 出力(ステーション) for x, y in stations: print(x, y) # 出力(訪問箇所) print(len(tour)) for type, id in tour: print(type, id) def calscore(stations, tour, ALPHA): s = 0 NN = len(tour) for i in range(NN-1): type0, id0 = tour[i] type1, id1 = tour[i+1] id0 -= 1 id1 -= 1 if type0 == 1: x0, y0 = id_to_xy[id0] else: x0, y0 = stations[id0] if type1 == 1: x1, y1 = id_to_xy[id1] else: x1, y1 = stations[id1] d2 = (x0 - x1)**2 + (y0 - y1)**2 if type0 + type1 == 2: coef = ALPHA**2 elif type0 + type1 == 3: coef = ALPHA elif type0 + type1 == 4: coef = 1 s += d2 * coef sc = int(10**9 / (1000 + s**0.5) + 0.5) return sc sc = calscore(stations, tour, ALPHA) print(sc, file=sys.stderr)