結果

問題 No.2747 Permutation Adjacent Sum
ユーザー commy
提出日時 2024-07-15 02:48:07
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 934 ms / 3,000 ms
コード長 6,414 bytes
コンパイル時間 1,204 ms
コンパイル使用メモリ 110,260 KB
実行使用メモリ 50,164 KB
最終ジャッジ日時 2024-07-15 02:48:30
合計ジャッジ時間 20,453 ms
ジャッジサーバーID
(参考情報)
judge6 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include <limits>
#define rep(i, a, b) for (int i = int(a); i < int(b); i++)
using namespace std;
using ll = long long int; // NOLINT
using P = pair<ll, ll>;
// clang-format off
#ifdef _DEBUG_
#define dump(...) do{ cerr << __LINE__ << ":\t" << #__VA_ARGS__ << " = "; debug_print(__VA_ARGS__); } while(false)
template<typename T, typename... Ts> void debug_print(const T &t, const Ts &...ts) { cerr << t; ((cerr << ", " << ts), ...); cerr << endl; }
#else
#define dump(...) do{ } while(false)
#endif
template<typename T> vector<T> make_v(size_t a, T b) { return vector<T>(a, b); }
template<typename... Ts> auto make_v(size_t a, Ts... ts) { return vector<decltype(make_v(ts...))>(a, make_v(ts...)); }
template<typename T> bool chmin(T &a, const T& b) { if (a > b) {a = b; return true; } return false; }
template<typename T> bool chmax(T &a, const T& b) { if (a < b) {a = b; return true; } return false; }
template<typename T, typename... Ts> void print(const T& t, const Ts&... ts) { cout << t; ((cout << ' ' << ts), ...); cout << '\n'; }
constexpr static struct PositiveInfinity { template<typename T> constexpr operator T() const { return numeric_limits<T>::max() / 2; } constexpr auto
    operator-() const; } inf; // NOLINT
constexpr static struct NegativeInfinity { template<typename T> constexpr operator T() const { return numeric_limits<T>::lowest() / 2; } constexpr
    auto operator-() const; } NegativeInfinityVal;
constexpr auto PositiveInfinity::operator-() const { return NegativeInfinityVal; }
constexpr auto NegativeInfinity::operator-() const { return inf; }
// clang-format on
template<ll MOD>
class ModInt {
ll n;
auto constexpr inverse() const {
return this->pow(*this, this->mod - 2);
}
public:
constexpr static ll mod = MOD;
using mint = ModInt<MOD>;
constexpr ModInt() : n(0) {}
constexpr ModInt(const ll &nn) : n(((nn % MOD) + MOD) % MOD) {}
constexpr mint operator+=(const mint &m) {
n += m.n;
if (n >= mint::mod) n -= mint::mod;
return *this;
}
constexpr mint operator-=(const mint &m) {
n -= m.n;
if (n < 0) n += mint::mod;
return *this;
}
constexpr mint operator*=(const mint &m) {
n *= m.n;
if (n >= mint::mod) n %= mint::mod;
return *this;
}
constexpr mint operator/=(const mint &m) {
return (*this) *= m.inverse();
}
friend constexpr mint operator+(mint t, const mint &m) {
return t += m;
}
friend constexpr mint operator-(mint t, const mint &m) {
return t -= m;
}
friend constexpr mint operator*(mint t, const mint &m) {
return t *= m;
}
friend constexpr mint operator/(mint t, const mint &m) {
return t /= m;
}
constexpr mint operator=(const ll &l) {
n = l % mint::mod;
if (n < 0) n += mint::mod;
return *this;
}
friend ostream &operator<<(ostream &out, const mint &m) {
out << m.n;
return out;
}
friend istream &operator>>(istream &in, mint &m) {
ll l;
in >> l;
m = l;
return in;
}
static constexpr auto pow(const mint &x, ll p) {
mint ans = 1;
for (auto m = x; p > 0; p /= 2, m *= m) {
if (p % 2) ans *= m;
}
return ans;
}
constexpr ll get_raw() const {
return n;
}
};
using mint = ModInt<998244353>::mint;
constexpr mint operator"" _m(unsigned long long m) {
return mint(m);
}
template<typename T>
class LagrangeInterpolation {
std::vector<T> x, y;
public:
LagrangeInterpolation(const std::vector<T> &xp, const std::vector<T> &yp) : x(xp), y(yp) {}
T interpolate(const T &t) const {
const int N = static_cast<int>(x.size());
std::vector<T> al(N, 1), ar(N, 1);
for (int i = 0; i < N - 1; i++) {
al[i + 1] = al[i] * (t - x[i]);
ar[N - i - 2] = ar[N - i - 1] * (t - x[N - i - 1]);
}
T b = std::accumulate(next(x.begin()), x.end(), T{1}, [&](T acc, const T &xi) { return acc * (x[0] - xi); });
T ans = 0;
for (uint i = 0; i < x.size(); i++) {
ans += y[i] * al[i] * ar[i] / b;
if (i + 1 < x.size()) {
b *= x[i + 1] - x.front();
b /= x[i] - x.back();
}
}
return ans;
}
};
mint factrial[] = {
1, 295201906, 160030060, 957629942, 545208507, 213689172, 760025067, 939830261, 506268060, 39806322, 808258749, 440133909, 686156489,
        741797144, 390377694, 12629586, 544711799, 104121967, 495867250, 421290700, 117153405, 57084755, 202713771, 675932866, 79781699, 956276337
        , 652678397, 35212756, 655645460, 468129309, 761699708, 533047427, 287671032, 206068022, 50865043, 144980423, 111276893, 259415897,
        444094191, 593907889, 573994984, 892454686, 566073550, 128761001, 888483202, 251718753, 548033568, 428105027, 742756734, 546182474,
62402409, 102052166, 826426395, 159186619, 926316039, 176055335, 51568171, 414163604, 604947226, 681666415, 511621808, 924112080, 265769800,
        955559118, 763148293, 472709375, 19536133, 860830935, 290471030, 851685235, 242726978, 169855231, 612759169, 599797734, 961628039, 953297493
        , 62806842, 37844313, 909741023, 689361523, 887890124, 380694152, 669317759, 367270918, 806951470, 843736533, 377403437, 945260111,
        786127243, 80918046, 875880304, 364983542, 623250998, 598764068, 804930040, 24257676, 214821357, 791011898, 954947696, 183092975,
};
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
ll n, k;
cin >> n >> k;
auto powsum = [&](ll kk) -> mint {
vector<mint> x(kk + 2), y(kk + 2, 1);
iota(x.begin(), x.end(), 1);
rep(i, 0, kk + 1) {
y[i + 1] = mint::pow(x[i + 1], kk) + y[i];
}
LagrangeInterpolation<mint> li(x, y);
return li.interpolate(n);
};
constexpr int B = 10'000'000;
mint ans = n * powsum(k) - powsum(k + 1);
n--;
ans *= 2;
ans *= factrial[n / B];
rep(i, 0, n % B) {
ans *= n / B * B + i + 1;
}
print(ans);
// mint t = 1;
// for (int i = 1; i <= n + 1; i++) {
// t *= i;
// if (i % B == 0) {
// print(t);
// }
// }
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0