結果

問題 No.2805 Go to School
ユーザー ecotteaecottea
提出日時 2024-07-15 22:48:20
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 194 ms / 2,000 ms
コード長 10,043 bytes
コンパイル時間 4,380 ms
コンパイル使用メモリ 278,932 KB
実行使用メモリ 22,364 KB
最終ジャッジ日時 2024-07-16 01:43:16
合計ジャッジ時間 8,396 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 76 ms
16,896 KB
testcase_05 AC 91 ms
14,160 KB
testcase_06 AC 51 ms
9,264 KB
testcase_07 AC 44 ms
9,260 KB
testcase_08 AC 72 ms
14,476 KB
testcase_09 AC 51 ms
9,192 KB
testcase_10 AC 46 ms
9,080 KB
testcase_11 AC 194 ms
21,080 KB
testcase_12 AC 108 ms
14,564 KB
testcase_13 AC 154 ms
18,480 KB
testcase_14 AC 21 ms
6,400 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 1 ms
5,376 KB
testcase_18 AC 72 ms
11,436 KB
testcase_19 AC 48 ms
8,872 KB
testcase_20 AC 112 ms
15,756 KB
testcase_21 AC 168 ms
20,140 KB
testcase_22 AC 68 ms
10,964 KB
testcase_23 AC 107 ms
14,600 KB
testcase_24 AC 108 ms
14,456 KB
testcase_25 AC 32 ms
8,648 KB
testcase_26 AC 135 ms
22,364 KB
testcase_27 AC 62 ms
16,416 KB
testcase_28 AC 7 ms
7,040 KB
testcase_29 AC 11 ms
7,936 KB
testcase_30 AC 34 ms
12,436 KB
testcase_31 AC 52 ms
10,112 KB
testcase_32 AC 108 ms
18,860 KB
testcase_33 AC 153 ms
18,868 KB
testcase_34 AC 2 ms
5,376 KB
testcase_35 AC 2 ms
5,376 KB
testcase_36 AC 53 ms
9,084 KB
testcase_37 AC 56 ms
10,368 KB
testcase_38 AC 109 ms
15,744 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = static_modint<1234567891>;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif


//【重み付きグラフの辺】
/*
* to : 行き先の頂点番号
* cost : 辺の重み
*/
struct WEdge {
	// verify : https://judge.yosupo.jp/problem/shortest_path

	int to; // 行き先の頂点番号
	ll cost; // 辺の重み

	WEdge() : to(-1), cost(-INFL) {}
	WEdge(int to, ll cost) : to(to), cost(cost) {}

	// プレーングラフで呼ばれたとき用
	operator int() const { return to; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const WEdge& e) {
		os << '(' << e.to << ',' << e.cost << ')';
		return os;
	}
#endif
};


//【重み付きグラフ】
/*
* WGraph g
* g[v] : 頂点 v から出る辺を並べたリスト
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;


//【重み付きグラフの入力】O(n + m)
/*
* (始点, 終点, 重み) の組からなる入力を受け取り,n 頂点 m 辺の重み付きグラフを構築して返す.
*
* n : グラフの頂点の数
* m : グラフの辺の数(省略すれば n-1)
* directed : 有向グラフか(省略すれば false)
* zero_indexed : 入力が 0-indexed か(省略すれば false)
*/
WGraph read_WGraph(int n, int m = -1, bool directed = false, bool zero_indexed = false) {
	// verify : https://judge.yosupo.jp/problem/shortest_path

	WGraph g(n);
	if (m == -1) m = n - 1;

	rep(j, m) {
		int u, v; ll c;
		cin >> u >> v >> c;

		if (!zero_indexed) { --u; --v; }

		g[u].push_back({ v, c });
		if (!directed && u != v) g[v].push_back({ u, c });
	}

	return g;
}


//【単一始点最短路】O(n + m log n)
/*
* 非負の重み付きグラフ g に対し st から各頂点への最短距離(到達不能なら INFL)を格納したリストを返す.
*/
vl dijkstra(const WGraph& g, int st) {
	// 参考 : https://snuke.hatenablog.com/entry/2021/02/22/102734
	// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bl

	int n = sz(g);
	vl dist(n, INFL); // st からの距離
	dist[st] = 0;

	// 組 (st からの距離, 頂点番号) を入れる優先度付きキュー
	priority_queue_rev<pli> q;
	q.push({ 0, st });

	while (!q.empty()) {
		auto [c, s] = q.top(); q.pop();

		// すでにより短い距離に更新されていたなら何もしない(忘れると O(n^2))
		if (dist[s] < c) continue;

		// より短い距離で辿り着けるなら距離を更新し,その先も探索する.
		repe(e, g[s]) if (chmin(dist[e.to], dist[s] + e.cost)) q.push({ dist[e.to], e.to });
	}

	return dist;
}


//【単一始点最短路(嘘)】O(n + m log n)
/*
* 非負の重み付きグラフ g に対し st から各頂点への最短距離(到達不能なら INFL)を格納したリストを返す.
* ・・・はずなのだがミスっている.
*/
vl uso_dijkstra(const WGraph& g, int st) {
	int n = sz(g);
	vl dist(n, INFL); // st からの距離

	// 組 (st からの距離, 頂点番号) を入れる優先度付きキュー
	priority_queue_rev<pli> q;
	q.push({ 0, st });

	while (!q.empty()) {
		auto [c, s] = q.top(); q.pop();

		// 忘れると O(n^2) になるよってどっかできいたのでそれっぽいのを書いておく.
		if (dist[s] < c) continue;

		// 距離を更新
		chmin(dist[s], c);

		repe(e, g[s]) {
			// 調べるだけ無駄なものはキューに入れないことで定数倍高速化できるよって
			// どっかできいたのでそれっぽいのを書いておく.
			if (dist[e.to] > dist[s] + e.cost) {
				q.push({ dist[s] + e.cost, e.to });
			}
		}
	}

	return dist;
}


void gen(int n, int m) {
	// 参考:https://github.com/yosupo06/library-checker-problems/blob/master/graph/shortest_path/gen/almost_line.cpp

	int l = 1;
	ll s = 1;
	ll e = (ll)1e9;

	mt19937_64 mt((int)time(NULL));
	uniform_int_distribution<int> rnd(0, (int)1e9 - 1);

	set<pii> es;
	rep(i, n - 1) es.insert({ i + 1, i + 2 });

	while (sz(es) < m) {
		int i = rnd(mt) % n;
		int j = i + rnd(mt) % 2 + 2;
		if (j >= n) continue;

		es.insert({ i + 1, j + 1 });
	}

	cout << n << " " << m << " " << l << " " << s << " " << e << endl;
	for (auto [u, v] : es) {
		cout << u << " " << v << " " << 1 << endl;
	}
	cout << n << endl;
}


int main() {
	input_from_file("input.txt");
//	output_to_file("output.txt");

//	gen((int)1e5, (int)2e5); exit(0);

	int n, m, l; ll s, e;
	cin >> n >> m >> l >> s >> e;

	auto g = read_WGraph(n, m);

	vi t(l);
	cin >> t;
	--t;

	auto d = dijkstra(g, 0);
	auto dR = dijkstra(g, n - 1);

//	auto d = uso_dijkstra(g, 0);
//	auto dR = uso_dijkstra(g, n - 1);

	ll res = INFL;

	repe(i, t) {
		if (d[i] >= s + e) continue;

		ll st = max(s, d[i]) + 1;

		chmin(res, st + dR[i]);
	}

	if (res == INFL) res = -1;

	EXIT(res);
}
0