結果
| 問題 |
No.901 K-ary εxtrεεmε
|
| コンテスト | |
| ユーザー |
cutmdo
|
| 提出日時 | 2024-07-18 22:44:34 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 376 ms / 3,000 ms |
| コード長 | 12,683 bytes |
| コンパイル時間 | 2,599 ms |
| コンパイル使用メモリ | 171,120 KB |
| 実行使用メモリ | 54,676 KB |
| 最終ジャッジ日時 | 2024-07-18 22:44:47 |
| 合計ジャッジ時間 | 12,539 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 29 |
ソースコード
#define PROBLEM "https://yukicoder.me/problems/no/901"
#include <iostream>
#include <ranges>
#include <vector>
#include <set>
#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <deque>
template<class Node = int, class Cost = long long>
class Graph {
//using Node = int;
//using Cost = long long;
using Edge = std::pair<Node, Cost>;
using Edges = std::vector<Edge>;
const int m_n;
std::vector<Edges> m_graph;
public:
Graph(int n) :m_n(n), m_graph(n) {}
auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {
m_graph[f].emplace_back(t, c);
}
auto addEdgeUndirected(const Node& f, const Node& t, const Cost& c = 1) {
addEdge(f, t, c); addEdge(t, f, c);
}
auto getEdges(const Node& from)const {
class EdgesRange {
const typename Edges::const_iterator b, e;
public:
EdgesRange(const Edges& edges) :b(edges.begin()), e(edges.end()) {}
auto begin()const { return b; }
auto end()const { return e; }
};
return EdgesRange(m_graph[from]);
}
auto getEdges()const {
std::deque<std::tuple<Node, Node, Cost>> edges;
for(Node from = 0; from < m_n; ++from) for(const auto& [to, c] : getEdges(from)) {
edges.emplace_back(from, to, c);
}
return edges;
}
auto getEdgesExcludeCost()const {
std::deque<std::pair<Node, Node>> edges;
for(Node from = 0; from < m_n; ++from) for(const auto& [to, _] : getEdges(from)) {
edges.emplace_back(from, to);
}
return edges;
}
auto reverse()const {
auto rev = Graph<Node, Cost>(m_n);
for(const auto& [from, to, c] : getEdges()) {
rev.addEdge(to, from, c);
}
return rev;
}
auto size()const { return m_n; };
};
template<class Node, class Cost>
class HeavyLightDecomposition {
using GraphOrderd = std::unordered_map<Node, std::deque<Node>>;
const Node m_n;
const std::vector<Node> m_size;
const GraphOrderd m_tree;
const std::vector<Node> m_height;
const std::vector<std::pair<Node, Node>> m_root_par;
const std::vector<Node> m_ids;
const std::vector<Node> m_order;
const std::vector<Node> m_edge_ids;
static auto constructGraph(const Graph<Node, Cost>& tree) {
auto n = tree.size();
std::deque<std::pair<Node, Node>> order;
std::vector<Node> used(n);
std::stack<std::pair<Node, Node>> stk;
stk.emplace(0, -1); used[0] = true;
while(!stk.empty()) {
auto [f, p] = stk.top();
order.emplace_front(f, p);
stk.pop();
for(const auto& [t, _] : tree.getEdges(f)) {
if(used[t]) { continue;; }
used[t] = true;
stk.emplace(t, f);
}
}
std::vector<Node> size(n, 1);
GraphOrderd hld_tree;
for(const auto& [f, p] : order) {
Node size_sum = 1;
Node size_max = 0;
std::deque<Node> to_list;
for(const auto& [t, _] : tree.getEdges(f)) {
if(t == p) { continue; }
if(size[t] > size_max) {
size_max = size[t];
to_list.emplace_back(t);
} else {
to_list.emplace_front(t);
}
size_sum += size[t];
}
if(!to_list.empty()) {
hld_tree.emplace(f, to_list);
}
size[f] = size_sum;
}
return hld_tree;
}
static auto constructSize(const Graph<Node, Cost>& tree) {
auto n = tree.size();
std::deque<std::pair<Node, Node>> order;
std::vector<Node> used(n);
std::stack<std::pair<Node, Node>> stk;
stk.emplace(0, -1); used[0] = true;
while(!stk.empty()) {
auto [f, p] = stk.top();
order.emplace_front(f, p);
stk.pop();
for(const auto& [t, _] : tree.getEdges(f)) {
if(used[t]) { continue;; }
used[t] = true;
stk.emplace(t, f);
}
}
std::vector<Node> size(n, 1);
for(const auto& [f, p] : order) {
Node size_sum = 1;
for(const auto& [t, _] : tree.getEdges(f)) {
if(t == p) { continue; }
size_sum += size[t];
}
size[f] = size_sum;
}
return size;
}
static auto constructRootPar(Node n, const GraphOrderd& tree) {
std::vector<std::pair<Node, Node>> root_par(n);
std::stack<std::tuple<Node, Node, Node>> stk;
stk.emplace(0, 0, -1);
while(!stk.empty()) {
auto [f, root, par] = stk.top();
stk.pop();
if(tree.find(f) == tree.end()) { root_par[f] = {root,par}; continue; }
auto itr = tree.at(f).rbegin();
stk.emplace(*itr, root, par);
root_par[f] = {root,par};
for(++itr; itr != tree.at(f).rend(); ++itr) {
stk.emplace(*itr, *itr, f);
}
}
return root_par;
}
static auto constructHeight(Node n, const GraphOrderd& tree) {
std::vector<Node> height(n);
std::queue<Node> q;
q.emplace(0);
while(!q.empty()) {
auto f = q.front();
q.pop();
if(tree.find(f) == tree.end()) { continue; }
for(const auto& t : tree.at(f)) {
height[t] = height[f] + 1;
q.emplace(t);
}
}
return height;
}
auto constructIds() const {
std::vector<Node> ids(m_n);
Node val = 0;
std::stack<Node> stk;
stk.emplace(0);
while(!stk.empty()) {
auto f = stk.top();
stk.pop();
ids[f] = val; ++val;
if(m_tree.find(f) == m_tree.end()) { continue; }
for(const auto& t : m_tree.at(f)) { stk.emplace(t); }
}
return ids;
}
auto constructOrder()const {
std::vector<Node> order(m_n);
for(int i = 0; i < m_n; ++i) { order[m_ids[i]] = i; }
return order;
}
/*
* 辺をnodeとして拡張した場合の辺nodeだけIDを振る
* (1) - (2)
* (1) - (e) - (2)
* [-1, -1, 0]
*/
auto constructEdgeIds() const {
Node edge_size = (m_n >> 1);
std::vector<Node> edge_ids(m_n, -1);
Node val = 0;
std::stack<Node> stk;
stk.emplace(0);
while(!stk.empty()) {
auto f = stk.top();
stk.pop();
if(f > edge_size) { edge_ids[f] = val; ++val; }
if(m_tree.find(f) == m_tree.end()) { continue; }
for(const auto& t : m_tree.at(f)) { stk.emplace(t); }
}
return edge_ids;
}
public:
HeavyLightDecomposition(const Graph<Node, Cost>& tree) :
m_n(tree.size()),
m_size(constructSize(tree)),
m_tree(constructGraph(tree)),
m_root_par(constructRootPar(m_n, m_tree)),
m_height(constructHeight(m_n, m_tree)),
m_ids(constructIds()),
m_order(constructOrder()),
m_edge_ids(constructEdgeIds()) {
}
auto getId(Node i)const { return m_ids[i]; }
auto getEdgeId(Node i)const { return m_edge_ids[i]; }
auto getOrder(Node i)const { return m_order[i]; }
auto lca(Node f, Node t)const {
do {
auto [fr, fp] = m_root_par[f];
auto [tr, tp] = m_root_par[t];
if(fr == tr) { break; }
auto fph = (fp > -1) ? m_height[fp] : -1;
auto tph = (tp > -1) ? m_height[tp] : -1;
if(fph < tph) { t = tp; } else { f = fp; }
} while(true);
return (m_height[f] < m_height[t]) ? f : t;
}
auto range(Node f, Node t)const {
std::deque<std::pair<Node, Node>> ret;
auto add = [&](Node f, Node t) {
auto l = std::min(m_ids[f], m_ids[t]);
auto r = std::max(m_ids[f], m_ids[t]);
ret.emplace_back(l, r);
};
do {
auto [fr, fp] = m_root_par[f];
auto [tr, tp] = m_root_par[t];
if(fr == tr) { add(f, t); break; }
auto fph = (fp > -1) ? m_height[fp] : -1;
auto tph = (tp > -1) ? m_height[tp] : -1;
if(fph < tph) { add(t, tr); t = tp; } else { add(f, fr); f = fp; }
} while(true);
return ret;
}
auto rangeEdge(Node f, Node t)const {
Node edge_size = (m_n >> 1);
std::deque<std::pair<Node, Node>> ret;
auto add = [&](Node f, Node t) {
auto l = std::min(m_ids[f], m_ids[t]);
auto r = std::max(m_ids[f], m_ids[t]);
if(m_order[l] <= edge_size) { ++l; }
if(m_order[r] <= edge_size) { --r; }
if(l > r) { return; }
auto edge_l = m_edge_ids[m_order[l]];
auto edge_r = m_edge_ids[m_order[r]];
ret.emplace_back(edge_l, edge_r);
};
do {
auto [fr, fp] = m_root_par[f];
auto [tr, tp] = m_root_par[t];
if(fr == tr) { add(f, t); break; }
auto fph = (fp > -1) ? m_height[fp] : -1;
auto tph = (tp > -1) ? m_height[tp] : -1;
if(fph < tph) { add(t, tr); t = tp; } else { add(f, fr); f = fp; }
} while(true);
return ret;
}
auto rangeSubTree(Node f)const {
return std::pair<Node, Node>{
m_ids[f], m_ids[f] + m_size[f] - 1
};
}
};
template<class Node, class Cost>
class AuxiliaryTree {
// 定数倍高速化のため破壊的
std::vector<int> compres_map;
const std::vector<Cost> depth_cost;
const HeavyLightDecomposition<Node, Cost> hld;
auto construct_depth(const Graph<Node, Cost>& tree)const {
std::vector<Cost> depth_cost(tree.size());
std::vector<int> used(tree.size());
auto dfs = [&](auto&& self, Node from) -> void {
used[from] = true;
for(const auto& [to, c] : tree.getEdges(from)) if(!used[to]) {
depth_cost[to] = depth_cost[from] + c;
self(self, to);
}
};
dfs(dfs, 0);
return depth_cost;
}
public:
AuxiliaryTree(const Graph<Node, Cost>& tree) :
compres_map(tree.size()),
depth_cost(construct_depth(tree)),
hld(tree) {
}
auto compression(const std::vector<int>& nodes) {
auto compare = [&](int a, int b) {return hld.getId(a) < hld.getId(b); };
// 元の頂点集合
auto nodes_set = std::set<int, decltype(compare)>(nodes.begin(), nodes.end(), compare);
auto nodes_set_with_lca = nodes_set;
// pre orderでの全ての隣接nodeのLCAを求める
for(auto itr = nodes_set_with_lca.begin(); std::next(itr) != nodes_set_with_lca.end(); ++itr) {
nodes_set_with_lca.emplace(hld.lca(*itr, *std::next(itr)));
}
// 座標圧縮
int at_size = nodes_set_with_lca.size();
for(int i = 0; auto x : nodes_set_with_lca) { compres_map[x] = i; ++i; }
// LCAを含めた全てのnodeで子孫関係を保って辺を張る
std::stack<int> stk;
Graph<Node, Cost> auxiliary_tree(at_size);
for(auto nd : nodes_set_with_lca) {
while(!stk.empty() && hld.lca(stk.top(), nd) != stk.top()) {
stk.pop();
}
if(!stk.empty()) {
auto f = compres_map[stk.top()];
auto t = compres_map[nd];
auto c = depth_cost[stk.top()] + depth_cost[nd] - depth_cost[hld.lca(stk.top(), nd)] * 2;
auxiliary_tree.addEdgeUndirected(f, t, c);
}
stk.emplace(nd);
}
return auxiliary_tree;
}
};
int main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
int n;
std::cin >> n;
Graph tree(n);
for(auto _ : std::views::iota(0, n - 1)) {
int f, t, c;
std::cin >> f >> t >> c;
tree.addEdgeUndirected(f, t, c);
}
auto at = AuxiliaryTree(tree);
int q;
std::cin >> q;
for([[maybe_unused]] auto _ : std::views::iota(0, q)) {
int k;
std::cin >> k;
std::vector<int> v(k);
for(auto i : std::views::iota(0, k)) { std::cin >> v[i]; }
auto comp_tree = at.compression(v);
long long ans = 0;
for(const auto& [f, t, c] : comp_tree.getEdges()) if(f < t) {
ans += c;
}
std::cout << ans << "\n";
}
}
cutmdo