結果
| 問題 |
No.2817 Competition
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-07-19 22:03:30 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 788 ms / 2,000 ms |
| コード長 | 7,727 bytes |
| コンパイル時間 | 5,856 ms |
| コンパイル使用メモリ | 318,100 KB |
| 実行使用メモリ | 126,544 KB |
| 最終ジャッジ日時 | 2024-07-19 22:03:54 |
| 合計ジャッジ時間 | 20,832 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 24 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
#include<atcoder/all>
using namespace atcoder;
using mint=atcoder::modint998244353;
#define int long long
template<class mint>
struct FormalPowerSeries:vector<mint>{
using vector<mint>::vector;
using vector<mint>::operator=;
using fps=FormalPowerSeries;
using sfps=vector<pair<int,mint>>;
fps& operator+=(const fps& g){
if(g.size()>this->size())this->resize(g.size());
for(int i=0;i<(int)g.size();i++)(*this)[i]+=g[i];
return *this;
}
fps& operator+=(const mint& v){
if(this->empty())this->resize(1);
(*this)[0]+=v;
return *this;
}
fps operator+(const fps& g)const{return fps(*this)+=g;}
fps operator+(const mint& v)const{return fps(*this)+=v;}
friend fps operator+(const mint& v,const fps& f){return f+v;}
fps& operator+=(const int& v){*this+=mint(v);return *this;}
fps operator+(const int& v){return fps(*this)+=v;;}
friend fps operator+(const int& v,const fps& f){return f+v;}
fps& operator-=(const fps& g){
if(g.size()>this->size())this->resize(g.size());
for(int i=0;i<(int)g.size();i++)(*this)[i]-=g[i];
return *this;
}
fps& operator-=(const mint& v){
if(this->empty())this->resize(1);
(*this)[0]-=v;
return *this;
}
fps operator-(const fps& g)const{return fps(*this)-=g;}
fps operator-(const mint& v)const{return fps(*this)-=v;}
friend fps operator-(const mint& v,const fps& f){return -(f-v);}
fps& operator-=(const int& v){*this-=v;return *this;}
fps operator-(const int& v){return fps(*this)-=v;}
friend fps operator-(const int& v,const fps& f){return -(f-v);}
fps operator-()const{return fps(*this)*=-1;}
fps& operator*=(const mint& v){for(auto&e:*this)e*=v;return *this;}
fps operator*(const mint& v)const{return fps(*this)*=v;}
friend fps operator*(const mint& v,const fps& f){return f*v;}
fps& operator*=(const int& v){*this*=mint(v);return *this;}
fps operator*(const int& v)const{return fps(*this)*=v;}
friend fps operator*(const int&v,const fps& f){return f*v;}
fps& operator<<=(const int d){
this->insert(this->begin(),d,0);
return *this;
}
fps operator<<(const int d)const{return fps(*this)<<=d;}
fps& operator>>=(const int d){
this->erase(this->begin(),this->begin()+min((int)this->size(),d));
return *this;
}
fps operator>>(const int d)const{return fps(*this)>>=d;}
//fast
fps& operator*=(const fps& g){
*this=atcoder::convolution(*this,g);
return *this;
}
//naive
// fps& operator*=(const fps& g){
// this->resize(this->size()+g.size()-1);
// for(int i=(int)this->size()-1;i>=0;i--){
// for(int j=1;j<=(int)g.size();j++){
// if(i+j>=(int)this->size())break;
// (*this)[i+j]+=(*this)[i]*g[j];
// }
// (*this)[i]*=g[0];
// }
// return *this;
// }
fps operator*(const fps& g)const{return fps(*this)*=g;}
fps inv(int d)const{
fps g={(*this)[0].inv()};
for(int k=1;k<d;k*=2){
g=(2-*this*g)*g;
g.resize(2*k);
}
g.resize(d+1);
return g;
}
fps& operator/=(const fps& g){return *this=fps(*this*=g.inv(this->size())).pre(this->size());}
fps& operator/=(const mint& v){for(auto&e:*this)e/=v;return *this;}
fps operator/(const fps& g)const{return fps(*this)/=g;}
fps operator/(const mint& v)const{return fps(*this)/=v;}
fps quotient(const fps& g)const{
if(this->size()<g.size())return fps();
return (fps(this->rev()/g.rev()).pre(this->size()-g.size()+1)).rev();
}
fps reminder(const fps& g)const{return fps(*this-this->quotient(g)*g).pre(g.size()-1);}
pair<fps,fps> quotient_reminder(const fps& g)const{
pair<fps,fps> res;
res.first=this->quotient(g);
res.second=fps(*this-res.first*g).pre(g.size()-1);
return res;
}
void shrink(){
while(this->size()&&this->back()==mint(0))this->pop_back();
}
fps rev()const{fps g(*this);reverse(g.begin(),g.end());return g;}
fps dot(fps g)const{
fps res(min(this->size(),g.size()));
for(int i=0;i<(int)res.size();i++)res[i]=(*this)[i]*g[i];
return res;
}
fps pre(int d)const{
fps res(begin(*this),begin(*this)+min((int)this->size(),d));
if((int)res.size()<d)res.resize(d);
return res;
}
fps& operator*=(const sfps& g){
auto it0=g.begin();
mint g0=0;
if(it0->first==0){
g0=it0->second;
it0++;
}
for(int i=this->size()-1;i>=0;i--){
for(auto it=it0;it!=g.end();it++){
auto[j,gj]=*it;
if(i+j>=this->size())break;
(*this)[i+j]+=(*this)[i]*gj;
}
(*this)[i]*=g0;
}
return *this;
}
fps operator*(const sfps& g)const{return fps(*this)*=g;}
fps& operator/=(const sfps& g){
auto it0=g.begin();
assert(it0->first==0&&it0->second!=0);
mint g0_inv=it0->second.inv();
it0++;
for(int i=0;i<(int)this->size();i++){
(*this)[i]*=g0_inv;
for(auto it=it0;it!=g.begin();it++){
auto[j,gj]=*it;
if(i+j>=this->size())break;
(*this)[i+j]-=(*this)[i]*gj;
}
}
return *this;
}
fps operator/(const sfps& g)const{return fps(*this)/=g;}
fps pow(long long d,const fps& g)const{
fps res={1},pow2=*this;
while(d>0){
if(d&1)res=(res*pow2).reminder(g);
pow2=(pow2*pow2).reminder(g);
d>>=1;
}
return res;
}
fps derivative()const{
fps res;
for(int i=1;i<(int)this->size();i++)res.push_back((*this)[i]*i);
return res;
}
fps integral()const{
fps res={0};
for(int i=0;i<(int)this->size();i++)res.push_back((*this)[i]/(i+1));
return res;
}
fps log(int d)const{
return fps(this->derivative()*this->inv(d)).integral().pre(d);
}
fps exp(int d)const{
fps g={1};
for(int k=1;k<d;k*=2){
g=g*(*this+1-g.log(2*k));
g.resize(2*k);
}
return g.pre(d);
}
fps pow(long long k,int d)const{
if(k==0){
fps res(d,mint(0));
if(d)res[0]=1;
return res;
}
int i0=0;
while(i0<(int)this->size()&&(*this)[i0]==mint(0))i0++;
if(i0==(int)this->size())return fps(d,mint(0));
mint c0=(*this)[i0];
fps fs=(*this>>i0)/c0;
if(i0>=(d+k-1)/k)return fps(d,mint(0));
int ds=(int)(d-k*i0);
fps gs=fps(mint(k)*fs.log(ds)).exp(ds);
fps g=fps(gs*c0.pow(k))<<(int)(k*i0);
return g;
}
friend istream& operator>>(istream& is,fps&f){
for(auto&e:f)cin>>e;
return is;
}
friend ostream& operator<<(ostream& os,const fps& f){
if((int)f.size()==0)os<<0;
else{
for(int i=0;i<(int)f.size();i++){
os<<f[i].val();
if(i<(int)f.size()-1)os<<" ";
}
return os;
}
return os;
}
};
using fps=FormalPowerSeries<mint>;
using sfps=vector<pair<int,mint>>;
template<long long mod,long long MAX_N>
struct factional_prime{
long long inv_[MAX_N+1];
long long fac_[MAX_N+1];
long long fac_inv_[MAX_N+1];
factional_prime(){
inv_[0]=0;inv_[1]=fac_[0]=fac_[1]=fac_inv_[0]=fac_inv_[1]=1;
for(long long i=2;i<=MAX_N;i++){
inv_[i]=((mod-mod/i)*inv_[mod%i])%mod;
fac_[i]=(fac_[i-1]*i)%mod;
fac_inv_[i]=(fac_inv_[i-1]*inv_[i])%mod;
}
}
long long inv(long long n){
if(n<0)return 0;
return inv_[n];
}
long long fac(long long n){
if(n<0)return 0;
return fac_[n];
}
long long finv(long long n){
if(n<0)return 0;
return fac_inv_[n];
}
long long nCr(long long n,long long r){
if(n<r||n<0||r<0)return 0;
return ((fac_[n]*fac_inv_[n-r])%mod*fac_inv_[r])%mod;
}
long long nPr(long long n,long long r){
if(n<r||n<0||r<0)return 0;
return (fac_[n]*fac_inv_[n-r])%mod;
}
};
factional_prime<998244353,5000000> fp;
signed main(){
int n;cin>>n;
vector<int> a(n);for(auto&&e:a)cin>>e;
auto prod=[&](auto prod,int l,int r)->fps {
if(r-l==1){
return fps({1,a[l]});
}else{
int m=(l+r)/2;
return prod(prod,l,m)*prod(prod,m,r);
}
};
fps f=prod(prod,0,n);
mint ans=0;
for(int i=0;i<=n;i++){
ans+=f[i]*mint(i).pow(n-i);
}
cout<<ans.val()<<endl;
}