結果
問題 | No.1600 Many Shortest Path Problems |
ユーザー | maspy |
提出日時 | 2024-07-20 01:54:38 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 257 ms / 4,000 ms |
コード長 | 58,726 bytes |
コンパイル時間 | 7,779 ms |
コンパイル使用メモリ | 345,088 KB |
実行使用メモリ | 59,532 KB |
最終ジャッジ日時 | 2024-07-20 01:54:59 |
合計ジャッジ時間 | 19,617 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 3 ms
5,376 KB |
testcase_04 | AC | 136 ms
22,364 KB |
testcase_05 | AC | 137 ms
22,384 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 4 ms
5,376 KB |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | AC | 92 ms
49,280 KB |
testcase_11 | AC | 118 ms
59,532 KB |
testcase_12 | AC | 134 ms
54,528 KB |
testcase_13 | AC | 140 ms
36,728 KB |
testcase_14 | AC | 139 ms
22,280 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 136 ms
45,460 KB |
testcase_18 | AC | 148 ms
22,272 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 134 ms
45,564 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 131 ms
22,408 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 165 ms
54,408 KB |
testcase_30 | AC | 183 ms
51,608 KB |
testcase_31 | AC | 130 ms
45,456 KB |
testcase_32 | AC | 119 ms
45,464 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 92 ms
22,272 KB |
testcase_36 | AC | 58 ms
22,276 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 174 ms
52,628 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 181 ms
51,412 KB |
testcase_41 | AC | 135 ms
54,420 KB |
testcase_42 | AC | 122 ms
51,472 KB |
testcase_43 | AC | 125 ms
51,472 KB |
testcase_44 | AC | 121 ms
49,664 KB |
testcase_45 | AC | 200 ms
54,548 KB |
testcase_46 | AC | 94 ms
51,572 KB |
testcase_47 | AC | 257 ms
51,604 KB |
testcase_48 | AC | 101 ms
51,216 KB |
testcase_49 | AC | 2 ms
5,376 KB |
testcase_50 | AC | 2 ms
5,376 KB |
testcase_51 | AC | 2 ms
5,376 KB |
testcase_52 | AC | 2 ms
5,376 KB |
testcase_53 | AC | 2 ms
5,376 KB |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1600" #line 1 "library/my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "library/other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) \ SHOW_IMPL(__VA_ARGS__, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) \ print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 4 "main.cpp" #line 1 "library/ds/bit_vector.hpp" struct Bit_Vector { int n; vc<pair<u64, u32>> dat; Bit_Vector(int n) : n(n) { dat.assign((n + 127) >> 6, {0, 0}); } void set(int i) { dat[i >> 6].fi |= u64(1) << (i & 63); } void reset() { fill(all(dat), pair<u64, u32>{0, 0}); } void build() { FOR(i, len(dat) - 1) dat[i + 1].se = dat[i].se + popcnt(dat[i].fi); } // [0, k) 内の 1 の個数 int count(int k, bool f) { auto [a, b] = dat[k >> 6]; int ret = b + popcnt(a & ((u64(1) << (k & 63)) - 1)); return (f ? ret : k - ret); } int count(int L, int R, bool f) { return count(R, f) - count(L, f); } string to_string() { string ans; FOR(i, n) ans += '0' + (dat[i / 64].fi >> (i % 64) & 1); return ans; } }; #line 1 "library/ds/index_compression.hpp" template <typename T> struct Index_Compression_DISTINCT_SMALL { static_assert(is_same_v<T, int>); int mi, ma; vc<int> dat; vc<int> build(vc<int> X) { mi = 0, ma = -1; if (!X.empty()) mi = MIN(X), ma = MAX(X); dat.assign(ma - mi + 2, 0); for (auto& x: X) dat[x - mi + 1]++; FOR(i, len(dat) - 1) dat[i + 1] += dat[i]; for (auto& x: X) { x = dat[x - mi]++; } FOR_R(i, 1, len(dat)) dat[i] = dat[i - 1]; dat[0] = 0; return X; } int operator()(ll x) { return dat[clamp<ll>(x - mi, 0, ma - mi + 1)]; } }; template <typename T> struct Index_Compression_SAME_SMALL { static_assert(is_same_v<T, int>); int mi, ma; vc<int> dat; vc<int> build(vc<int> X) { mi = 0, ma = -1; if (!X.empty()) mi = MIN(X), ma = MAX(X); dat.assign(ma - mi + 2, 0); for (auto& x: X) dat[x - mi + 1] = 1; FOR(i, len(dat) - 1) dat[i + 1] += dat[i]; for (auto& x: X) { x = dat[x - mi]; } return X; } int operator()(ll x) { return dat[clamp<ll>(x - mi, 0, ma - mi + 1)]; } }; template <typename T> struct Index_Compression_SAME_LARGE { vc<T> dat; vc<int> build(vc<T> X) { vc<int> I = argsort(X); vc<int> res(len(X)); for (auto& i: I) { if (!dat.empty() && dat.back() == X[i]) { res[i] = len(dat) - 1; } else { res[i] = len(dat); dat.eb(X[i]); } } dat.shrink_to_fit(); return res; } int operator()(T x) { return LB(dat, x); } }; template <typename T> struct Index_Compression_DISTINCT_LARGE { vc<T> dat; vc<int> build(vc<T> X) { vc<int> I = argsort(X); vc<int> res(len(X)); for (auto& i: I) { res[i] = len(dat), dat.eb(X[i]); } dat.shrink_to_fit(); return res; } int operator()(T x) { return LB(dat, x); } }; template <typename T, bool SMALL> using Index_Compression_DISTINCT = typename std::conditional<SMALL, Index_Compression_DISTINCT_SMALL<T>, Index_Compression_DISTINCT_LARGE<T>>::type; template <typename T, bool SMALL> using Index_Compression_SAME = typename std::conditional<SMALL, Index_Compression_SAME_SMALL<T>, Index_Compression_SAME_LARGE<T>>::type; // SAME: [2,3,2] -> [0,1,0] // DISTINCT: [2,2,3] -> [0,2,1] // (x): lower_bound(X,x) をかえす template <typename T, bool SAME, bool SMALL> using Index_Compression = typename std::conditional<SAME, Index_Compression_SAME<T, SMALL>, Index_Compression_DISTINCT<T, SMALL>>::type; #line 2 "library/alg/monoid/add.hpp" template <typename E> struct Monoid_Add { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 4 "library/ds/wavelet_matrix/wavelet_matrix.hpp" // 静的メソッドinverseの存在をチェックするテンプレート template <typename, typename = std::void_t<>> struct has_inverse : std::false_type {}; template <typename T> struct has_inverse<T, std::void_t<decltype( T::inverse(std::declval<typename T::value_type>()))>> : std::true_type {}; struct Dummy_Data_Structure { using MX = Monoid_Add<bool>; void build(const vc<bool>& A) {} }; template <typename Y, bool SMALL_Y, typename SEGTREE = Dummy_Data_Structure> struct Wavelet_Matrix { using Mono = typename SEGTREE::MX; using T = typename Mono::value_type; static_assert(Mono::commute); int n, log, K; Index_Compression<Y, true, SMALL_Y> IDX; vc<Y> ItoY; vc<int> mid; vc<Bit_Vector> bv; vc<SEGTREE> seg; Wavelet_Matrix() {} Wavelet_Matrix(const vc<Y>& A) { build(A); } Wavelet_Matrix(const vc<Y>& A, vc<T>& SUM_Data) { build(A, SUM_Data); } template <typename F> Wavelet_Matrix(int n, F f) { build(n, f); } template <typename F> void build(int m, F f) { vc<Y> A(m); vc<T> S(m); for (int i = 0; i < m; ++i) tie(A[i], S[i]) = f(i); build(A, S); } void build(const vc<Y>& A) { build(A, vc<T>(len(A), Mono::unit())); } void build(const vc<Y>& A, vc<T> S) { n = len(A); vc<int> B = IDX.build(A); K = 0; for (auto& x: B) chmax(K, x + 1); ItoY.resize(K); FOR(i, n) ItoY[B[i]] = A[i]; log = 0; while ((1 << log) < K) ++log; mid.resize(log), bv.assign(log, Bit_Vector(n)); vc<int> B0(n), B1(n); vc<T> S0(n), S1(n); seg.resize(log + 1); seg[log].build(S); for (int d = log - 1; d >= 0; --d) { int p0 = 0, p1 = 0; for (int i = 0; i < n; ++i) { bool f = (B[i] >> d & 1); if (!f) { B0[p0] = B[i], S0[p0] = S[i], p0++; } if (f) { bv[d].set(i), B1[p1] = B[i], S1[p1] = S[i], p1++; } } swap(B, B0), swap(S, S0); move(B1.begin(), B1.begin() + p1, B.begin() + p0); move(S1.begin(), S1.begin() + p1, S.begin() + p0); mid[d] = p0, bv[d].build(), seg[d].build(S); } } // [L,R) x [0,y) int prefix_count(int L, int R, Y y) { int p = IDX(y); if (p == 0) return 0; if (p == K) return R - L; int cnt = 0; for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (p >> d & 1) cnt += r0 - l0, L = l1, R = r1; if (!(p >> d & 1)) L = l0, R = r0; } return cnt; } // [L,R) x [y1,y2) int count(int L, int R, Y y1, Y y2) { return prefix_count(L, R, y2) - prefix_count(L, R, y1); } // [L,R) x [0,y) pair<int, T> prefix_count_and_prod(int L, int R, Y y) { int p = IDX(y); if (p == 0) return {0, Mono::unit()}; if (p == K) return {R - L, seg[log].prod(L, R)}; int cnt = 0; T t = Mono::unit(); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (p >> d & 1) { cnt += r0 - l0, t = Mono::op(t, seg[d].prod(l0, r0)), L = l1, R = r1; } if (!(p >> d & 1)) L = l0, R = r0; } return {cnt, t}; } // [L,R) x [y1,y2) pair<int, T> count_and_prod(int L, int R, Y y1, Y y2) { if constexpr (has_inverse<Mono>::value) { auto [c1, t1] = prefix_count_and_prod(L, R, y1); auto [c2, t2] = prefix_count_and_prod(L, R, y2); return {c2 - c1, Mono::op(Mono::inverse(t1), t2)}; } int lo = IDX(y1), hi = IDX(y2), cnt = 0; T t = Mono::unit(); auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { assert(b - a == (1 << d)); if (hi <= a || b <= lo) return; if (lo <= a && b <= hi) { cnt += R - L, t = Mono::op(t, seg[d].prod(L, R)); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b); }; dfs(dfs, log, L, R, 0, 1 << log); return {cnt, t}; } // [L,R) x [y1,y2) T prefix_prod(int L, int R, Y y) { return prefix_count_and_prod(L, R, y).se; } // [L,R) x [y1,y2) T prod(int L, int R, Y y1, Y y2) { return count_and_prod(L, R, y1, y2).se; } T prod_all(int L, int R) { return seg[log].prod(L, R); } Y kth(int L, int R, int k) { assert(0 <= k && k < R - L); int p = 0; for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (k < r0 - l0) { L = l0, R = r0; } else { k -= r0 - l0, L = l1, R = r1, p |= 1 << d; } } return ItoY[p]; } // y 以上最小 OR infty<Y> Y next(int L, int R, Y y) { int k = IDX(y); int p = K; auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { if (p <= a || L == R || b <= k) return; if (d == 0) { chmin(p, a); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l0, r0, a, c), dfs(dfs, d, l1, r1, c, b); }; dfs(dfs, log, L, R, 0, 1 << log); return (p == K ? infty<Y> : ItoY[p]); } // y 以下最大 OR -infty<T> Y prev(int L, int R, Y y) { int k = IDX(y + 1); int p = -1; auto dfs = [&](auto& dfs, int d, int L, int R, int a, int b) -> void { if (b - 1 <= p || L == R || k <= a) return; if (d == 0) { chmax(p, a); return; } --d; int c = (a + b) / 2; int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; dfs(dfs, d, l1, r1, c, b), dfs(dfs, d, l0, r0, a, c); }; dfs(dfs, log, L, R, 0, 1 << log); return (p == -1 ? -infty<Y> : ItoY[p]); } Y median(bool UPPER, int L, int R) { assert(0 <= L && L < R && R <= n); int k = (UPPER ? (R - L) / 2 : (R - L - 1) / 2); return kth(L, R, k); } pair<Y, T> kth_value_and_prod(int L, int R, int k) { assert(0 <= k && k <= R - L); if (k == R - L) return {infty<Y>, seg[log].prod(L, R)}; int p = 0; T t = Mono::unit(); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (k < r0 - l0) { L = l0, R = r0; } else { t = Mono::op(t, seg[d].prod(l0, r0)), k -= r0 - l0, L = l1, R = r1, p |= 1 << d; } } t = Mono::op(t, seg[0].prod(L, L + k)); return {ItoY[p], t}; } T prod_index_range(int L, int R, int k1, int k2) { static_assert(has_inverse<Mono>::value); T t1 = kth_value_and_prod(L, R, k1).se; T t2 = kth_value_and_prod(L, R, k2).se; return Mono::op(Mono::inverse(t1), t2); } // [L,R) x [0,y) での check(cnt, prod) が true となる最大の (cnt,prod) template <typename F> pair<int, T> max_right(F check, int L, int R) { int cnt = 0; T t = Mono::unit(); assert(check(0, Mono::unit())); if (check(R - L, seg[log].prod(L, R))) { return {R - L, seg[log].prod(L, R)}; } for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; int cnt1 = cnt + r0 - l0; T t1 = Mono::op(t, seg[d].prod(l0, r0)); if (check(cnt1, t1)) { cnt = cnt1, t = t1, L = l1, R = r1; } else { L = l0, R = r0; } } return {cnt, t}; } void set(int i, T t) { assert(0 <= i && i < n); int L = i, R = i + 1; seg[log].set(L, t); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (l0 < r0) L = l0, R = r0; if (l0 == r0) L = l1, R = r1; seg[d].set(L, t); } } void multiply(int i, T t) { assert(0 <= i && i < n); int L = i, R = i + 1; seg[log].multiply(L, t); for (int d = log - 1; d >= 0; --d) { int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (l0 < r0) L = l0, R = r0; if (l0 == r0) L = l1, R = r1; seg[d].multiply(L, t); } } }; /* // 座圧するかどうかを COMPRESS で指定する // xor 的な使い方をする場合には、コンストラクタで log を渡すこと template <typename T, bool COMPRESS, bool USE_SUM> struct Wavelet_Matrix_Old { static_assert(is_same_v<T, int> || is_same_v<T, ll>); int N, lg; vector<int> mid; vector<Bit_Vector> bv; vc<T> key; bool set_log; vvc<T> cumsum; Wavelet_Matrix_Old() {} // 和を使わないなら、SUM_data は空でよい Wavelet_Matrix_Old(vc<T> A, vc<T> SUM_data = {}, int log = -1) { build(A, SUM_data, log); } void build(vc<T> A, vc<T> SUM_data = {}, int log = -1) { if constexpr (USE_SUM) { assert(len(SUM_data) == len(A)); } N = len(A), lg = log, set_log = (log != -1); if (N == 0) { lg = 0; cumsum.resize(1); cumsum[0] = {0}; return; } vc<T>& S = SUM_data; if (COMPRESS) { assert(!set_log); key.reserve(N); vc<int> I = argsort(A); for (auto&& i: I) { if (key.empty() || key.back() != A[i]) key.eb(A[i]); A[i] = len(key) - 1; } key.shrink_to_fit(); } if (lg == -1) lg = __lg(max<ll>(MAX(A), 1)) + 1; mid.resize(lg), bv.assign(lg, Bit_Vector(N)); if constexpr (USE_SUM) cumsum.assign(1 + lg, vc<T>(N + 1, 0)); S.resize(N); vc<T> A0(N), A1(N); vc<T> S0(N), S1(N); FOR_R(d, -1, lg) { int p0 = 0, p1 = 0; if constexpr (USE_SUM) { FOR(i, N) { cumsum[d + 1][i + 1] = cumsum[d + 1][i] + S[i]; } } if (d == -1) break; FOR(i, N) { bool f = (A[i] >> d & 1); if (!f) { if constexpr (USE_SUM) S0[p0] = S[i]; A0[p0++] = A[i]; } else { if constexpr (USE_SUM) S1[p1] = S[i]; bv[d].set(i), A1[p1++] = A[i]; } } mid[d] = p0; bv[d].build(); swap(A, A0), swap(S, S0); FOR(i, p1) A[p0 + i] = A1[i], S[p0 + i] = S1[i]; } } // [L,R) x [a,b), (cnt, monoid value) pair<int, T> range_cnt_sum(int L, int R, T a, T b, T xor_val = 0) { if (xor_val != 0) assert(set_log); if (a == b) return {0, 0}; if (COMPRESS) a = LB(key, a), b = LB(key, b); int cnt = 0; T sm = 0; auto dfs = [&](auto& dfs, int d, int L, int R, T lx, T rx) -> void { if (rx <= a || b <= lx) return; if (a <= lx && rx <= b) { cnt += R - L, sm += get(d, L, R); return; } --d; T mx = (lx + rx) / 2; int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (xor_val >> d & 1) swap(l0, l1), swap(r0, r1); dfs(dfs, d, l0, r0, lx, mx), dfs(dfs, d, l1, r1, mx, rx); }; dfs(dfs, lg, L, R, 0, T(1) << lg); return {cnt, sm}; } // smallest k, sum of [0,k) pair<T, T> kth_value_sum(int L, int R, int k, T xor_val = 0) { assert(0 <= k && k <= R - L); if (k == R - L) { return {infty<T>, sum_all(L, R)}; } if (L == R) return {infty<T>, 0}; if (xor_val != 0) assert(set_log); T sm = 0, val = 0; for (int d = lg - 1; d >= 0; --d) { // いま幅 d+1 の trie node に居て, 幅 d のところに行く int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (xor_val >> d & 1) swap(l0, l1), swap(r0, r1); if (k < r0 - l0) { L = l0, R = r0; } else { k -= r0 - l0, val |= T(1) << d, L = l1, R = r1; if constexpr (USE_SUM) sm += get(d, l0, r0); } } if constexpr (USE_SUM) sm += get(0, L, L + k); if (COMPRESS) val = key[val]; return {val, sm}; } int count(int L, int R, T a, T b, T xor_val = 0) { return range_cnt_sum(L, R, a, b, xor_val).fi; } T sum(int L, int R, T a, T b, T xor_val = 0) { static_assert(USE_SUM); return range_cnt_sum(L, R, a, b, xor_val).se; } T sum_index_range(int L, int R, int k1, int k2, T xor_val = 0) { static_assert(USE_SUM); return kth_value_sum(L, R, k2, xor_val).se - kth_value_sum(L, R, k1, xor_val).se; } T kth(int L, int R, int k, T xor_val = 0) { assert(0 <= k && k < R - L); return kth_value_sum(L, R, k, xor_val).fi; } // x 以上最小 OR infty<T> T next(int L, int R, T x, T xor_val = 0) { if (xor_val != 0) assert(set_log); if (L == R) return infty<T>; if (COMPRESS) x = LB(key, x); T ans = infty<T>; auto dfs = [&](auto& dfs, int d, int L, int R, T lx, T rx) -> void { if (ans <= lx || L == R || rx <= x) return; if (d == 0) { chmin(ans, lx); return; } --d; T mx = (lx + rx) / 2; int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (xor_val >> d & 1) swap(l0, l1), swap(r0, r1); dfs(dfs, d, l0, r0, lx, mx), dfs(dfs, d, l1, r1, mx, rx); }; dfs(dfs, lg, L, R, 0, T(1) << lg); if (COMPRESS && ans < infty<T>) ans = key[ans]; return ans; } // x 以下最大 OR -infty<T> T prev(int L, int R, T x, T xor_val = 0) { if (xor_val != 0) assert(set_log); if (L == R) return -infty<T>; T ans = -infty<int>; ++x; if (COMPRESS) x = LB(key, x); auto dfs = [&](auto& dfs, int d, int L, int R, T lx, T rx) -> void { if ((rx - 1) <= ans || L == R || x <= lx) return; if (d == 0) { chmax(ans, lx); return; } --d; T mx = (lx + rx) / 2; int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (xor_val >> d & 1) swap(l0, l1), swap(r0, r1); dfs(dfs, d, l1, r1, mx, rx), dfs(dfs, d, l0, r0, lx, mx); }; dfs(dfs, lg, L, R, 0, T(1) << lg); if (COMPRESS && ans != -infty<T>) ans = key[ans]; return ans; } // xor した結果で、[L, R) の中で中央値。 // LOWER = true:下側中央値、false:上側中央値 T median(bool UPPER, int L, int R, T xor_val = 0) { int n = R - L; int k = (UPPER ? n / 2 : (n - 1) / 2); return kth(L, R, k, xor_val); } T sum_all(int L, int R) { return get(lg, L, R); } // check(cnt, prefix sum) が true となるような最大の (cnt, sum) template <typename F> pair<int, T> max_right(F check, int L, int R, T xor_val = 0) { assert(check(0, 0)); if (xor_val != 0) assert(set_log); if (L == R) return {0, 0}; if (check(R - L, get(lg, L, R))) return {R - L, get(lg, L, R)}; int cnt = 0; T sm = 0; for (int d = lg - 1; d >= 0; --d) { int l0 = bv[d].count(L, 0), r0 = bv[d].count(R, 0); int l1 = L + mid[d] - l0, r1 = R + mid[d] - r0; if (xor_val >> d & 1) swap(l0, l1), swap(r0, r1); if (check(cnt + r0 - l0, sm + get(d, l0, r0))) { cnt += r0 - l0, sm += get(d, l0, r0); L = l1, R = r1; } else { L = l0, R = r0; } } int k = binary_search( [&](int k) -> bool { return check(cnt + k, sm + get(0, L, L + k)); }, 0, R - L); cnt += k, sm += get(0, L, L + k); return {cnt, sm}; } private: inline T get(int d, int L, int R) { if constexpr (USE_SUM) return cumsum[d][R] - cumsum[d][L]; return 0; } }; */ #line 2 "library/ds/wavelet_matrix/wavelet_matrix_2d_range.hpp" template <typename SEGTREE, typename XY, bool SMALL_X, bool SMALL_Y> struct Wavelet_Matrix_2D_Range { // 点群を X 昇順に並べる. Wavelet_Matrix<XY, SMALL_Y, SEGTREE> WM; using Mono = typename SEGTREE::MX; using T = typename Mono::value_type; static_assert(Mono::commute); Index_Compression<XY, false, SMALL_X> IDX_X; int n; vc<int> new_idx; template <typename F> Wavelet_Matrix_2D_Range(int n, F f) { build(n, f); } template <typename F> void build(int m, F f) { n = m; vc<XY> X(n), Y(n); vc<T> S(n); FOR(i, n) tie(X[i], Y[i], S[i]) = f(i); new_idx = IDX_X.build(X); vc<int> I(n); FOR(i, n) I[new_idx[i]] = i; Y = rearrange(Y, I); S = rearrange(S, I); WM.build(Y, S); } int count(XY x1, XY x2, XY y1, XY y2) { return WM.count(IDX_X(x1), IDX_X(x2), y1, y2); } // [L,R) x [-inf,y) pair<int, T> prefix_count_and_prod(XY x1, XY x2, XY y) { return WM.prefix_count_and_prod(IDX_X(x1), IDX_X(x2), y); } // [L,R) x [y1,y2) pair<int, T> count_and_prod(XY x1, XY x2, XY y1, XY y2) { return WM.count_and_prod(IDX_X(x1), IDX_X(x2), y1, y2); } // [L,R) x [-inf,inf) T prod_all(XY x1, XY x2) { return WM.prod_all(IDX_X(x1), IDX_X(x2)); } // [L,R) x [-inf,y) T prefix_prod(XY x1, XY x2, XY y) { return WM.prefix_prod(IDX_X(x1), IDX_X(x2), y); } // [L,R) x [y1,y2) T prod(XY x1, XY x2, XY y1, XY y2) { return WM.prod(IDX_X(x1), IDX_X(x2), y1, y2); } // [L,R) x [-inf,y) での check(cnt, prod) が true となる最大の (cnt,prod) template <typename F> pair<int, T> max_right(F check, XY x1, XY x2) { return WM.max_right(check, IDX_X(x1), IDX_X(x2)); } // i は最初に渡したインデックス void set(int i, T t) { WM.set(new_idx[i], t); } // i は最初に渡したインデックス void multiply(int i, T t) { WM.multiply(new_idx[i], t); } }; #line 2 "library/ds/sparse_table/sparse_table.hpp" // 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速 template <class Monoid> struct Sparse_Table { using MX = Monoid; using X = typename MX::value_type; int n, log; vvc<X> dat; Sparse_Table() {} Sparse_Table(int n) { build(n); } template <typename F> Sparse_Table(int n, F f) { build(n, f); } Sparse_Table(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; dat.resize(log); dat[0].resize(n); FOR(i, n) dat[0][i] = f(i); FOR(i, log - 1) { dat[i + 1].resize(len(dat[i]) - (1 << i)); FOR(j, len(dat[i]) - (1 << i)) { dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]); } } } X prod(int L, int R) { if (L == R) return MX::unit(); if (R == L + 1) return dat[0][L]; int k = topbit(R - L - 1); return MX::op(dat[k][L], dat[k][R - (1 << k)]); } template <class F> int max_right(const F check, int L) { assert(0 <= L && L <= n && check(MX::unit())); if (L == n) return n; int ok = L, ng = n + 1; while (ok + 1 < ng) { int k = (ok + ng) / 2; bool bl = check(prod(L, k)); if (bl) ok = k; if (!bl) ng = k; } return ok; } template <class F> int min_left(const F check, int R) { assert(0 <= R && R <= n && check(MX::unit())); if (R == 0) return 0; int ok = R, ng = -1; while (ng + 1 < ok) { int k = (ok + ng) / 2; bool bl = check(prod(k, R)); if (bl) ok = k; if (!bl) ng = k; } return ok; } }; #line 2 "library/ds/sparse_table/disjoint_sparse_table.hpp" template <class Monoid> struct Disjoint_Sparse_Table { using MX = Monoid; using X = typename MX::value_type; int n, log; vvc<X> dat; Disjoint_Sparse_Table() {} Disjoint_Sparse_Table(int n) { build(n); } template <typename F> Disjoint_Sparse_Table(int n, F f) { build(n, f); } Disjoint_Sparse_Table(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; dat.resize(log); dat[0].reserve(n); FOR(i, n) dat[0].eb(f(i)); FOR(i, 1, log) { auto& v = dat[i]; v = dat[0]; int b = 1 << i; for (int m = b; m <= n; m += 2 * b) { int L = m - b, R = min(n, m + b); FOR_R(j, L + 1, m) v[j - 1] = MX::op(v[j - 1], v[j]); FOR(j, m, R - 1) v[j + 1] = MX::op(v[j], v[j + 1]); } } } X prod(int L, int R) { if (L == R) return MX::unit(); --R; if (L == R) return dat[0][L]; int k = topbit(L ^ R); return MX::op(dat[k][L], dat[k][R]); } template <class F> int max_right(const F check, int L) { assert(0 <= L && L <= n && check(MX::unit())); if (L == n) return n; int ok = L, ng = n + 1; while (ok + 1 < ng) { int k = (ok + ng) / 2; bool bl = check(prod(L, k)); if (bl) ok = k; if (!bl) ng = k; } return ok; } template <class F> int min_left(const F check, int R) { assert(0 <= R && R <= n && check(MX::unit())); if (R == 0) return 0; int ok = R, ng = -1; while (ng + 1 < ok) { int k = (ok + ng) / 2; bool bl = check(prod(k, R)); if (bl) ok = k; if (!bl) ng = k; } return ok; } }; #line 3 "library/ds/static_range_product.hpp" /* 参考:https://judge.yosupo.jp/submission/106668 長さ 2^LOG のブロックに分ける.ブロック内の prefix, suffix を持つ. ブロック積の列を ST(DST) で持つ.ブロックをまたぐ積は O(1). 短いものは O(1) を諦めて愚直ということにする. 前計算:O(Nlog(N)/2^LOG) クエリ:O(1) / worst O(2^LOG) */ template <typename Monoid, typename SPARSE_TABLE, int LOG = 4> struct Static_Range_Product { using MX = Monoid; using X = typename MX::value_type; int N, b_num; vc<X> A, pre, suf; // inclusive SPARSE_TABLE ST; Static_Range_Product() {} template <typename F> Static_Range_Product(int n, F f) { build(n, f); } Static_Range_Product(const vc<X>& v) { build(v); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { N = m; b_num = N >> LOG; A.resize(N); FOR(i, N) A[i] = f(i); pre = A, suf = A; constexpr int mask = (1 << LOG) - 1; FOR(i, 1, N) { if (i & mask) pre[i] = MX::op(pre[i - 1], A[i]); } FOR_R(i, 1, N) { if (i & mask) suf[i - 1] = MX::op(A[i - 1], suf[i]); } ST.build(b_num, [&](int i) -> X { return suf[i << LOG]; }); } // O(1) or O(R-L) X prod(int L, int R) { if (L == R) return MX::unit(); R -= 1; int a = L >> LOG, b = R >> LOG; if (a < b) { X x = ST.prod(a + 1, b); x = MX::op(suf[L], x); x = MX::op(x, pre[R]); return x; } X x = A[L]; FOR(i, L + 1, R + 1) x = MX::op(x, A[i]); return x; } }; #line 7 "main.cpp" #line 2 "library/alg/monoid/min.hpp" template <typename E> struct Monoid_Min { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); } static constexpr X unit() { return infty<E>; } static constexpr bool commute = true; }; #line 2 "library/graph/tree.hpp" #line 2 "library/graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { static constexpr bool is_directed = directed; int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } #ifdef FASTIO // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } #endif void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } #ifdef FASTIO void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } #endif vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} // sum(deg(v)) の計算量になっていて、 // 新しいグラフの n+m より大きい可能性があるので注意 Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) { if (len(new_idx) != N) new_idx.assign(N, -1); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> history; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (len(used_e) <= e.id) used_e.resize(e.id + 1); if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { history.eb(e.id); used_e[e.id] = 1; int eid = (keep_eid ? e.id : -1); G.add(new_idx[a], new_idx[b], e.cost, eid); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: history) used_e[eid] = 0; G.build(); return G; } Graph<T, true> to_directed_tree(int root = -1) { if (root == -1) root = 0; assert(!is_directed && prepared && M == N - 1); Graph<T, true> G1(N); vc<int> par(N, -1); auto dfs = [&](auto& dfs, int v) -> void { for (auto& e: (*this)[v]) { if (e.to == par[v]) continue; par[e.to] = v, dfs(dfs, e.to); } }; dfs(dfs, root); for (auto& e: edges) { int a = e.frm, b = e.to; if (par[a] == b) swap(a, b); assert(par[b] == a); G1.add(a, b, e.cost); } G1.build(); return G1; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 4 "library/graph/tree.hpp" // HLD euler tour をとっていろいろ。 template <typename GT> struct Tree { using Graph_type = GT; GT &G; using WT = typename GT::cost_type; int N; vector<int> LID, RID, head, V, parent, VtoE; vc<int> depth; vc<WT> depth_weighted; Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); } void build(int r = 0, bool hld = 1) { if (r == -1) return; // build を遅延したいとき N = G.N; LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r); V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1); depth.assign(N, -1), depth_weighted.assign(N, 0); assert(G.is_prepared()); int t1 = 0; dfs_sz(r, -1, hld); dfs_hld(r, t1); } void dfs_sz(int v, int p, bool hld) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; depth_weighted[e.to] = depth_weighted[v] + e.cost; VtoE[e.to] = e.id; dfs_sz(e.to, v, hld); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int heavy_child(int v) { int k = LID[v] + 1; if (k == N) return -1; int w = V[k]; return (parent[w] == v ? w : -1); } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int v_to_e(int v) { return VtoE[v]; } int get_eid(int u, int v) { if (parent[u] != v) swap(u, v); assert(parent[u] == v); return VtoE[u]; } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } // 目標地点へ進む個数が k int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int la(int u, int v) { return LA(u, v); } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); } int lca(int u, int v) { return LCA(u, v); } int subtree_size(int v, int root = -1) { if (root == -1) return RID[v] - LID[v]; if (v == root) return N; int x = jump(v, root, 1); if (in_subtree(v, x)) return RID[v] - LID[v]; return N - RID[x] + LID[x]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist_weighted(int a, int b) { int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<int> collect_light(int v) { vc<int> res; bool skip = true; for (auto &&e: G[v]) if (e.to != parent[v]) { if (!skip) res.eb(e.to); skip = false; } return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } vc<int> restore_path(int u, int v) { vc<int> P; for (auto &&[a, b]: get_path_decomposition(u, v, 0)) { if (a <= b) { FOR(i, a, b + 1) P.eb(V[i]); } else { FOR_R(i, b, a + 1) P.eb(V[i]); } } return P; } // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}. // https://codeforces.com/problemset/problem/500/G pair<int, int> path_intersection(int a, int b, int c, int d) { int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d); int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d); int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d) if (x != y) return {x, y}; int z = ac ^ ad ^ cd; if (x != z) x = -1; return {x, x}; } }; #line 2 "library/ds/unionfind/unionfind.hpp" struct UnionFind { int n, n_comp; vc<int> dat; // par or (-size) UnionFind(int n = 0) { build(n); } void build(int m) { n = m, n_comp = m; dat.assign(n, -1); } void reset() { build(n); } int operator[](int x) { while (dat[x] >= 0) { int pp = dat[dat[x]]; if (pp < 0) { return dat[x]; } x = dat[x] = pp; } return x; } ll size(int x) { x = (*this)[x]; return -dat[x]; } bool merge(int x, int y) { x = (*this)[x], y = (*this)[y]; if (x == y) return false; if (-dat[x] < -dat[y]) swap(x, y); dat[x] += dat[y], dat[y] = x, n_comp--; return true; } vc<int> get_all() { vc<int> A(n); FOR(i, n) A[i] = (*this)[i]; return A; } }; #line 11 "main.cpp" #line 2 "library/mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "library/mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 836905998}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 13 "main.cpp" using mint = modint107; void solve() { LL(N, M); Graph<mint, 0> G(N); UnionFind uf(N); vc<pair<int, int>> edges; vc<bool> in_G(M); mint wt = 1; FOR(i, M) { LL(a, b); --a, --b; edges.eb(a, b); wt += wt; if (uf.merge(a, b)) { in_G[i] = 1; G.add(a, b, wt); } } G.build(); Tree<decltype(G)> tree(G); auto& par = tree.parent; vc<int> X, Y, W; FOR(e, M) { if (in_G[e]) continue; auto [a, b] = edges[e]; a = tree.LID[a], b = tree.LID[b]; if (a > b) swap(a, b); X.eb(a), Y.eb(b), W.eb(e); } using Mono = Monoid_Min<int>; using ST = Sparse_Table<Mono>; Wavelet_Matrix_2D_Range<Static_Range_Product<Mono, ST>, int, true, true> seg( len(X), [&](int i) -> tuple<int, int, int> { return {X[i], Y[i], W[i]}; }); LL(Q); FOR(Q) { LL(u, v, idx); --u, --v, --idx; auto [x, y] = edges[idx]; if (par[y] == x) swap(x, y); bool in_u = tree.in_subtree(u, x); bool in_v = tree.in_subtree(v, x); if (!in_G[idx] || in_u == in_v) { print(tree.dist_weighted(u, v)); continue; } // 木の外に出る移動が必要 int l = tree.LID[x], r = tree.RID[x]; int min_i = Mono::op(seg.prod(0, l, l, r), seg.prod(l, r, r, N)); if (min_i == Mono::unit()) { print(-1); continue; } auto [p, q] = edges[min_i]; bool in_p = tree.in_subtree(p, x); if (!in_u) swap(u, v); if (!in_p) swap(p, q); mint ANS = tree.dist_weighted(u, p) + tree.dist_weighted(v, q); ANS += mint(2).pow(min_i + 1); print(ANS); } } signed main() { solve(); return 0; }