結果
| 問題 |
No.2825 Sum of Scores of Sets of Specified Sections
|
| コンテスト | |
| ユーザー |
FplusFplusF
|
| 提出日時 | 2024-07-24 18:06:51 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 113 ms / 3,000 ms |
| コード長 | 4,313 bytes |
| コンパイル時間 | 3,392 ms |
| コンパイル使用メモリ | 258,892 KB |
| 実行使用メモリ | 8,320 KB |
| 最終ジャッジ日時 | 2024-07-26 20:02:06 |
| 合計ジャッジ時間 | 5,190 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 32 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
using ull=unsigned long long;
using pll=pair<ll,ll>;
using tll=tuple<ll,ll,ll>;
using ld=long double;
const ll INF=(1ll<<60);
#define rep(i,n) for (ll i=0;i<(ll)(n);i++)
#define replr(i,l,r) for (ll i=(ll)(l);i<(ll)(r);i++)
#define all(v) v.begin(),v.end()
#define len(v) ((ll)v.size())
template<class T> inline bool chmin(T &a,T b){
if(a>b){
a=b;
return true;
}
return false;
}
template<class T> inline bool chmax(T &a,T b){
if(a<b){
a=b;
return true;
}
return false;
}
//https://ei1333.github.io/library/math/matrix/matrix.hpp
template <class T>
struct Matrix {
vector<vector<T> > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}
Matrix(size_t n) : A(n, vector<T>(n, 0)) {};
size_t size() const {
if (A.empty()) return 0;
assert(A.size() == A[0].size());
return A.size();
}
size_t height() const { return (A.size()); }
size_t width() const { return (A[0].size()); }
inline const vector<T> &operator[](int k) const { return (A.at(k)); }
inline vector<T> &operator[](int k) { return (A.at(k)); }
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T> > C(n, vector<T>(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0) idx = j;
}
if (idx == -1) return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
#include<atcoder/modint>
using mint=atcoder::modint998244353;
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
ll h,w;
cin >> h >> w;
vector<vector<ll>> a(h,vector<ll>(w)),b(h,vector<ll>(w));
rep(i,h){
rep(j,w){
cin >> a[i][j];
}
}
rep(i,h){
rep(j,w){
cin >> b[i][j];
}
}
vector<vector<ll>> bt(w,vector<ll>(h));
rep(i,h){
rep(j,w){
bt[j][i]=b[i][j];
}
}
Matrix<mint> c(h,h);
rep(k,w){
rep(i,h){
rep(j,h){
c[i][j]+=a[i][k]*bt[k][j];
}
}
}
rep(i,h) c[i][i]++;
cout << (c.determinant()-1).val() << '\n';
}
FplusFplusF