結果
| 問題 |
No.2825 Sum of Scores of Sets of Specified Sections
|
| コンテスト | |
| ユーザー |
rniya
|
| 提出日時 | 2024-07-26 23:39:13 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 148 ms / 3,000 ms |
| コード長 | 4,872 bytes |
| コンパイル時間 | 3,681 ms |
| コンパイル使用メモリ | 265,176 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-07-26 23:39:20 |
| 合計ジャッジ時間 | 6,067 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 32 |
ソースコード
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (auto& e : v) {
is >> e;
}
return is;
}
template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
for (std::string_view sep = ""; const auto& e : v) {
os << std::exchange(sep, " ") << e;
}
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) {
return y < x and (x = std::forward<U>(y), true);
}
template <class T, class U = T> bool chmax(T& x, U&& y) {
return x < y and (x = std::forward<U>(y), true);
}
template <class T> void mkuni(std::vector<T>& v) {
std::ranges::sort(v);
auto result = std::ranges::unique(v);
v.erase(result.begin(), result.end());
}
template <class T> int lwb(const std::vector<T>& v, const T& x) {
return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}
#include <atcoder/modint>
template <typename T> std::vector<T> characteristic_polynomial(std::vector<std::vector<T>> M) {
assert(M.empty() or M.size() == M[0].size());
int n = M.size();
// reduce M to upper Hessenberg form
for (int j = 0; j < n - 2; j++) {
for (int i = j + 2; i < n; i++) {
if (M[i][j] != 0) {
std::swap(M[j + 1], M[i]);
for (int k = 0; k < n; k++) std::swap(M[k][j + 1], M[k][i]);
break;
}
}
if (M[j + 1][j] == 0) continue;
auto inv = T(1) / M[j + 1][j];
for (int i = j + 2; i < n; i++) {
auto coef = M[i][j] * inv;
for (int k = j; k < n; k++) M[i][k] -= coef * M[j + 1][k];
for (int k = 0; k < n; k++) M[k][j + 1] += coef * M[k][i];
}
}
// compute the characteristic polynomial of upper Hessenberg matrix M
std::vector<std::vector<T>> p(n + 1);
p[0] = {T(1)};
for (int i = 0; i < n; i++) {
p[i + 1].resize(i + 2);
for (int j = 0; j <= i; j++) {
p[i + 1][j + 1] += p[i][j];
p[i + 1][j] -= p[i][j] * M[i][i];
}
T betas = 1;
for (int j = i - 1; j >= 0; j--) {
betas *= M[j + 1][j];
T coef = -betas * M[j][i];
for (int k = 0; k <= j; k++) p[i + 1][k] += coef * p[j][k];
}
}
return p[n];
}
template <typename T>
std::vector<T> determinant_polynomial(std::vector<std::vector<T>> M0, std::vector<std::vector<T>> M1) {
assert(M0.size() == M1.size());
assert(M0.size() == M0[0].size());
assert(M1.size() == M1[0].size());
int n = M0.size(), off = 0;
T prod = 1;
for (int p = 0; p < n; p++) {
int pivot = -1;
for (int i = p; i < n; i++) {
if (M1[i][p] != 0) {
pivot = i;
break;
}
}
if (pivot == -1) {
if (++off > n) return std::vector<T>(n + 1, 0);
for (int i = 0; i < p; i++) {
for (int k = 0; k < n; k++) M0[k][p] -= M1[i][p] * M0[k][i];
M1[i][p] = 0;
}
for (int i = 0; i < n; i++) std::swap(M0[i][p], M1[i][p]);
p--;
continue;
}
if (pivot != p) {
std::swap(M0[p], M0[pivot]);
std::swap(M1[p], M1[pivot]);
prod *= -1;
}
prod *= M1[p][p];
auto inv = T(1) / M1[p][p];
for (int j = 0; j < n; j++) {
M0[p][j] *= inv;
M1[p][j] *= inv;
}
for (int i = 0; i < n; i++) {
if (i == p) continue;
auto coef = M1[i][p];
for (int j = 0; j < n; j++) {
M0[i][j] -= M0[p][j] * coef;
M1[i][j] -= M1[p][j] * coef;
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
M0[i][j] *= -1;
}
}
auto poly = characteristic_polynomial(M0);
std::vector<T> res(n + 1, 0);
for (int i = 0; i + off <= n; i++) res[i] = prod * poly[i + off];
return res;
}
using ll = long long;
using namespace std;
using mint = atcoder::modint998244353;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
int H, W;
cin >> H >> W;
vector A(H, vector<int>(W)), B(H, vector<int>(W));
cin >> A >> B;
vector C(H, vector<mint>(H, 0)), D(H, vector<mint>(H, 0));
for (int i = 0; i < H; i++) {
D[i][i] = 1;
for (int j = 0; j < H; j++) {
for (int k = 0; k < W; k++) {
C[i][j] += mint(A[i][k]) * B[j][k];
}
}
}
auto res = determinant_polynomial(C, D);
mint ans = accumulate(res.begin(), res.end(), mint(0)) - 1;
cout << ans.val() << "\n";
return 0;
}
rniya