結果
問題 | No.2824 Lights Up! (Grid Edition) |
ユーザー | hitonanode |
提出日時 | 2024-07-26 23:45:32 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 178 ms / 2,000 ms |
コード長 | 13,711 bytes |
コンパイル時間 | 3,044 ms |
コンパイル使用メモリ | 210,016 KB |
実行使用メモリ | 12,672 KB |
最終ジャッジ日時 | 2024-07-26 23:45:44 |
合計ジャッジ時間 | 11,975 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 105 ms
12,672 KB |
testcase_05 | AC | 107 ms
12,544 KB |
testcase_06 | AC | 107 ms
12,544 KB |
testcase_07 | AC | 119 ms
12,160 KB |
testcase_08 | AC | 105 ms
12,672 KB |
testcase_09 | AC | 109 ms
12,672 KB |
testcase_10 | AC | 104 ms
12,416 KB |
testcase_11 | AC | 120 ms
12,288 KB |
testcase_12 | AC | 104 ms
12,416 KB |
testcase_13 | AC | 170 ms
12,160 KB |
testcase_14 | AC | 104 ms
12,544 KB |
testcase_15 | AC | 178 ms
12,160 KB |
testcase_16 | AC | 101 ms
12,544 KB |
testcase_17 | AC | 168 ms
12,160 KB |
testcase_18 | AC | 103 ms
12,416 KB |
testcase_19 | AC | 164 ms
12,160 KB |
testcase_20 | AC | 28 ms
6,400 KB |
testcase_21 | AC | 82 ms
9,600 KB |
testcase_22 | AC | 3 ms
5,376 KB |
testcase_23 | AC | 94 ms
10,624 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 7 ms
5,376 KB |
testcase_26 | AC | 31 ms
6,656 KB |
testcase_27 | AC | 131 ms
11,776 KB |
testcase_28 | AC | 3 ms
5,376 KB |
testcase_29 | AC | 13 ms
5,376 KB |
testcase_30 | AC | 6 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 8 ms
5,376 KB |
testcase_33 | AC | 3 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 12 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 15 ms
5,376 KB |
testcase_38 | AC | 38 ms
6,400 KB |
testcase_39 | AC | 5 ms
5,376 KB |
testcase_40 | AC | 5 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
testcase_42 | AC | 2 ms
5,376 KB |
testcase_43 | AC | 2 ms
5,376 KB |
testcase_44 | AC | 2 ms
5,376 KB |
testcase_45 | AC | 2 ms
5,376 KB |
testcase_46 | AC | 2 ms
5,376 KB |
testcase_47 | AC | 2 ms
5,376 KB |
testcase_48 | AC | 2 ms
5,376 KB |
testcase_49 | AC | 2 ms
5,376 KB |
testcase_50 | AC | 2 ms
5,376 KB |
testcase_51 | AC | 2 ms
5,376 KB |
testcase_52 | AC | 2 ms
5,376 KB |
testcase_53 | AC | 2 ms
5,376 KB |
testcase_54 | AC | 2 ms
5,376 KB |
testcase_55 | AC | 2 ms
5,376 KB |
testcase_56 | AC | 2 ms
5,376 KB |
testcase_57 | AC | 2 ms
5,376 KB |
testcase_58 | AC | 2 ms
5,376 KB |
testcase_59 | AC | 2 ms
5,376 KB |
testcase_60 | AC | 2 ms
5,376 KB |
testcase_61 | AC | 2 ms
5,376 KB |
testcase_62 | AC | 2 ms
5,376 KB |
testcase_63 | AC | 2 ms
5,376 KB |
testcase_64 | AC | 2 ms
5,376 KB |
testcase_65 | AC | 2 ms
5,376 KB |
testcase_66 | AC | 2 ms
5,376 KB |
testcase_67 | AC | 2 ms
5,376 KB |
testcase_68 | AC | 2 ms
5,376 KB |
testcase_69 | AC | 2 ms
5,376 KB |
testcase_70 | AC | 2 ms
5,376 KB |
testcase_71 | AC | 2 ms
5,376 KB |
testcase_72 | AC | 2 ms
5,376 KB |
testcase_73 | AC | 2 ms
5,376 KB |
testcase_74 | AC | 2 ms
5,376 KB |
testcase_75 | AC | 2 ms
5,376 KB |
testcase_76 | AC | 2 ms
5,376 KB |
testcase_77 | AC | 2 ms
5,376 KB |
testcase_78 | AC | 2 ms
5,376 KB |
testcase_79 | AC | 2 ms
5,376 KB |
testcase_80 | AC | 2 ms
5,376 KB |
testcase_81 | AC | 2 ms
5,376 KB |
testcase_82 | AC | 2 ms
5,376 KB |
testcase_83 | AC | 2 ms
5,376 KB |
testcase_84 | AC | 2 ms
5,376 KB |
testcase_85 | AC | 2 ms
5,376 KB |
testcase_86 | AC | 2 ms
5,376 KB |
testcase_87 | AC | 2 ms
5,376 KB |
testcase_88 | AC | 2 ms
5,376 KB |
testcase_89 | AC | 2 ms
5,376 KB |
testcase_90 | AC | 2 ms
5,376 KB |
testcase_91 | AC | 2 ms
5,376 KB |
testcase_92 | AC | 2 ms
5,376 KB |
testcase_93 | AC | 2 ms
5,376 KB |
testcase_94 | AC | 2 ms
5,376 KB |
testcase_95 | AC | 2 ms
5,376 KB |
testcase_96 | AC | 2 ms
5,376 KB |
testcase_97 | AC | 2 ms
5,376 KB |
testcase_98 | AC | 2 ms
5,376 KB |
testcase_99 | AC | 2 ms
5,376 KB |
testcase_100 | AC | 2 ms
5,376 KB |
testcase_101 | AC | 2 ms
5,376 KB |
testcase_102 | AC | 2 ms
5,376 KB |
testcase_103 | AC | 2 ms
5,376 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <memory> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include <bitset> #include <cassert> #include <tuple> #include <utility> #include <vector> // Gauss-Jordan elimination of n * m matrix M // Complexity: O(nm + nm rank(M) / 64) // Verified: abc276_h (2000 x 8000) template <int Wmax> std::vector<std::bitset<Wmax>> f2_gauss_jordan(int W, std::vector<std::bitset<Wmax>> M) { assert(W <= Wmax); int H = M.size(), c = 0; for (int h = 0; h < H and c < W; ++h, ++c) { int piv = -1; for (int j = h; j < H; ++j) { if (M[j][c]) { piv = j; break; } } if (piv == -1) { --h; continue; } std::swap(M[piv], M[h]); for (int hh = 0; hh < H; ++hh) { if (hh != h and M[hh][c]) M[hh] ^= M[h]; } } return M; } // Rank of Gauss-Jordan eliminated matrix template <int Wmax> int f2_rank_gauss_jordan(int W, const std::vector<std::bitset<Wmax>> &M) { assert(W <= Wmax); for (int h = (int)M.size() - 1; h >= 0; h--) { int j = 0; while (j < W and !M[h][j]) ++j; if (j < W) return h + 1; } return 0; } // determinant of F2 matrix. // Return 0 if the matrix is singular, otherwise return 1. // Complexity: O(W^3 / 64) template <int Wmax> int f2_determinant(const std::vector<std::bitset<Wmax>> &M) { const int H = M.size(); if (H > Wmax) return 0; auto tmp = M; for (int h = 0; h < H; ++h) { int piv = -1; for (int j = h; j < H; ++j) { if (tmp.at(j).test(h)) { piv = j; break; } } if (piv == -1) return 0; // singular if (piv != h) std::swap(tmp.at(piv), tmp.at(h)); for (int hh = h + 1; hh < H; ++hh) { if (tmp.at(hh).test(h)) tmp.at(hh) ^= tmp.at(h); } } return 1; // nonsingular } template <int W1, int W2> std::vector<std::bitset<W2>> f2_matmul(const std::vector<std::bitset<W1>> &A, const std::vector<std::bitset<W2>> &B) { int H = A.size(), K = B.size(); std::vector<std::bitset<W2>> C(H); for (int i = 0; i < H; i++) { for (int j = 0; j < K; j++) { if (A.at(i).test(j)) C.at(i) ^= B.at(j); } } return C; } template <int Wmax> std::vector<std::bitset<Wmax>> f2_matpower(std::vector<std::bitset<Wmax>> X, long long n) { int D = X.size(); std::vector<std::bitset<Wmax>> ret(D); for (int i = 0; i < D; i++) ret[i][i] = 1; while (n) { if (n & 1) ret = f2_matmul<Wmax, Wmax>(ret, X); X = f2_matmul<Wmax, Wmax>(X, X), n >>= 1; } return ret; } // Solve Ax = b on F_2 // - retval: {true, one of the solutions, {freedoms}} (if solution exists) // {false, {}, {}} (otherwise) // Complexity: O(HW + HW rank(A) / 64 + W^2 len(freedoms)) template <int Wmax, class Vec> std::tuple<bool, std::bitset<Wmax>, std::vector<std::bitset<Wmax>>> f2_system_of_linear_equations(std::vector<std::bitset<Wmax>> A, Vec b, int W) { int H = A.size(); assert(W <= Wmax); assert(A.size() == b.size()); std::vector<std::bitset<Wmax + 1>> M(H); for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) M[i][j] = A[i][j]; M[i][W] = b[i]; } M = f2_gauss_jordan<Wmax + 1>(W + 1, M); std::vector<int> ss(W, -1); std::vector<int> ss_nonneg_js; for (int i = 0; i < H; i++) { int j = 0; while (j <= W and !M[i][j]) ++j; if (j == W) return {false, 0, {}}; if (j < W) { ss_nonneg_js.push_back(j); ss[j] = i; } } std::bitset<Wmax> x; std::vector<std::bitset<Wmax>> D; for (int j = 0; j < W; ++j) { if (ss[j] == -1) { // This part may require W^2 space complexity in output std::bitset<Wmax> d; d[j] = 1; for (int jj : ss_nonneg_js) d[jj] = M[ss[jj]][j]; D.emplace_back(d); } else { x[j] = M[ss[j]][W]; } } return std::make_tuple(true, x, D); } void No() { puts("-1"); exit(0); } constexpr int Wmax = 50 * 50; void solve_small(const vector<vector<int>> &state) { const int N = state.size(); assert(lint(N) * N <= Wmax); vector<bitset<Wmax>> A(N * N); vector<bool> b(N * N); auto f = [&](int r, int c) { return r * N + c; }; REP(i, N) REP(j, N) { auto op = [&](int r, int c) { A[f(r, c)].flip(f(i, j)); A[f((r + N - 1) % N, c)].flip(f(i, j)); A[f(r, (c + N - 1) % N)].flip(f(i, j)); A[f((r + N - 1) % N, (c + N - 1) % N)].flip(f(i, j)); }; op(i, j); op(0, j); op(i, 0); b[f(i, j)] = state.at(i).at(j); } auto [ok, x, _] = f2_system_of_linear_equations<Wmax, decltype(b)>(A, b, N * N); if (ok) { cout << x.count() << '\n'; REP(i, N) REP(j, N) { if (x[f(i, j)]) cout << i << ' ' << j << '\n'; } exit(0); } else { No(); } } int main() { int N; cin >> N; vector<string> S(N); cin >> S; dbg(S); // assert(N > 50); vector state(N, vector<int>(N)); REP(i, N) REP(j, N) state.at(i).at(j) = S.at(i).at(j) == '#'; if (N * N <= Wmax) solve_small(state); vector ret(N, vector<int>(N)); auto sousa = [&](int r, int c) { int r1 = (r + N - 1) % N, c1 = (c + N - 1) % N; state.at(r).at(c) ^= 1; state.at(r1).at(c) ^= 1; state.at(r).at(c1) ^= 1; state.at(r1).at(c1) ^= 1; }; auto act = [&](int r, int c) { ret.at(r).at(c) ^= 1; sousa(r, c); sousa(r, 0); sousa(0, c); }; IFOR(c, 1, N - 1) { IFOR(r, 1, N - 1) { if (state.at(r).at(c)) act(r, c); } } FOR(r, 1, N - 1) { FOR(c, 1, N - 1) assert(state.at(r).at(c) == 0); } IFOR(r, 1, N) { if (state.at(r).front()) { FOR(c, 1, N) act(r, c); } } IFOR(c, 1, N) { if (state.front().at(c)) { FOR(r, 1, N) act(r, c); } } if (state.front().front()) act(0, 0); // IFOR(r, 3, N - 1) { // if (state.at(r).front()) { // act(r, 2); // act(r - 1, 2); // } // } // IFOR(c, 3, N - 1) { // if (state.front().at(c)) { // act(2, c); // act(2, c - 1); // } // } // if (state.at(2).at(0)) act(2, 2); // IFOR(r, 1, N - 1) { // if (state.at(r).front() != state.at(r).back()) act(r, 1); // } // REP(r, N) { // if (state.at(r).front() != state.at(r).back()) No(); // } // REP(c, N) { // if (state.front().at(c) != state.back().at(c)) No(); // } REP(i, N) REP(j, N) { if (state.at(i).at(j)) No(); } // if (state.back().back()) No(); for (auto s : state) dbg(s); int ans = 0; for (auto v : ret) ans += accumulate(ALL(v), 0); cout << ans << '\n'; REP(i, N) REP(j, N) { if (ret.at(i).at(j)) cout << i << ' ' << j << '\n'; } }