結果
| 問題 |
No.2825 Sum of Scores of Sets of Specified Sections
|
| コンテスト | |
| ユーザー |
rniya
|
| 提出日時 | 2024-07-27 00:08:53 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 145 ms / 3,000 ms |
| コード長 | 8,799 bytes |
| コンパイル時間 | 3,420 ms |
| コンパイル使用メモリ | 260,968 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-07-27 00:09:00 |
| 合計ジャッジ時間 | 6,106 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 32 |
ソースコード
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (auto& e : v) {
is >> e;
}
return is;
}
template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
for (std::string_view sep = ""; const auto& e : v) {
os << std::exchange(sep, " ") << e;
}
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) {
return y < x and (x = std::forward<U>(y), true);
}
template <class T, class U = T> bool chmax(T& x, U&& y) {
return x < y and (x = std::forward<U>(y), true);
}
template <class T> void mkuni(std::vector<T>& v) {
std::ranges::sort(v);
auto result = std::ranges::unique(v);
v.erase(result.begin(), result.end());
}
template <class T> int lwb(const std::vector<T>& v, const T& x) {
return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}
#include <atcoder/modint>
template <typename T> struct Matrix {
std::vector<std::vector<T>> A;
Matrix() = default;
Matrix(int n, int m) : A(n, std::vector<T>(m, 0)) {}
Matrix(int n) : A(n, std::vector<T>(n, 0)) {}
bool empty() const { return A.empty(); }
int size() const { return A.size(); }
int height() const { return A.size(); }
int width() const {
assert(not A.empty());
return A[0].size();
}
inline const std::vector<T>& operator[](int i) const { return A[i]; }
inline std::vector<T>& operator[](int i) { return A[i]; }
static Matrix identity(int n) {
Matrix res(n);
for (int i = 0; i < n; i++) res[i][i] = 1;
return res;
}
Matrix& operator+=(const Matrix& B) {
int n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
(*this)[i][j] += B[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& B) {
int n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
(*this)[i][j] -= B[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& B) {
int n = height(), m = B.width(), p = width();
assert(p == B.height());
std::vector<std::vector<T>> C(n, std::vector<T>(m, 0));
for (int i = 0; i < n; i++) {
for (int k = 0; k < p; k++) {
for (int j = 0; j < m; j++) {
C[i][j] += (*this)[i][k] * B[k][j];
}
}
}
std::swap(A, C);
return *this;
}
Matrix& operator*=(const T& v) {
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
(*this)[i][j] *= v;
}
}
return *this;
}
Matrix& operator/=(const T& v) {
T inv = T(1) / v;
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
(*this)[i][j] *= inv;
}
}
return *this;
}
Matrix operator-() const {
Matrix res(height(), width());
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
res[i][j] = -(*this)[i][j];
}
}
return res;
}
Matrix operator+(const Matrix& B) const { return Matrix(*this) += B; }
Matrix operator-(const Matrix& B) const { return Matrix(*this) -= B; }
Matrix operator*(const Matrix& B) const { return Matrix(*this) *= B; }
Matrix operator*(const T& v) const { return Matrix(*this) *= v; }
Matrix operator/(const T& v) const { return Matrix(*this) /= v; }
bool operator==(const Matrix& B) const {
assert(height() == B.height() && width() == B.width());
return A == B.A;
}
bool operator!=(const Matrix& B) const {
assert(height() == B.height() && width() == B.width());
return A != B.A;
}
Matrix pow(long long n) const {
assert(0 <= n);
Matrix x = *this, r = identity(size());
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
Matrix transpose() const {
Matrix res(width(), height());
for (int i = 0; i < height(); i++) {
for (int j = 0; j < width(); j++) {
res[j][i] = (*this)[i][j];
}
}
return res;
}
int rank() const { return Matrix(*this).gauss_jordan().first; }
T det() const { return Matrix(*this).gauss_jordan().second; }
Matrix inv() const {
assert(height() == width());
int n = height();
Matrix B(*this);
for (int i = 0; i < n; i++) {
B[i].resize(2 * n, T(0));
B[i][n + i] = T(1);
}
int rank = B.gauss_jordan(n).first;
if (rank != n) return {};
for (int i = 0; i < n; i++) {
B[i].erase(B[i].begin(), B[i].begin() + n);
}
return B;
}
std::vector<std::vector<T>> system_of_linear_equations(const std::vector<T>& b) const {
assert(height() == int(b.size()));
int n = height(), m = width();
Matrix B(*this);
for (int i = 0; i < n; i++) B[i].emplace_back(b[i]);
int rank = B.gauss_jordan(m).first;
for (int i = rank; i < n; i++) {
if (B[i][m] != T(0)) {
return {};
}
}
std::vector<std::vector<T>> res(1, std::vector<T>(m, 0));
std::vector<int> pivot(m, -1);
for (int i = 0, j = 0; i < rank; i++) {
while (B[i][j] == T(0)) j++;
res[0][j] = B[i][m];
pivot[j] = i;
}
for (int j = 0; j < m; j++) {
if (pivot[j] != -1) continue;
std::vector<T> x(m);
x[j] = 1;
for (int k = 0; k < j; k++) {
if (pivot[k] != -1) {
x[k] = -B[pivot[k]][j];
}
}
res.emplace_back(x);
}
return res;
}
friend std::ostream& operator<<(std::ostream& os, const Matrix& p) {
int n = p.height(), m = p.width();
os << "[(" << n << " * " << m << " Matrix)";
os << "\n[columun sums: ";
for (int j = 0; j < m; j++) {
T sum = 0;
for (int i = 0; i < n; i++) sum += p[i][j];
os << sum << (j + 1 < m ? "," : "");
}
os << "]";
for (int i = 0; i < n; i++) {
os << "\n[";
for (int j = 0; j < m; j++) os << p[i][j] << (j + 1 < m ? "," : "");
os << "]";
}
os << "]\n";
return os;
}
private:
std::pair<int, T> gauss_jordan(int pivot_end = -1) {
if (empty()) return {0, T(1)};
if (pivot_end == -1) pivot_end = width();
int rank = 0;
T det = 1;
for (int j = 0; j < pivot_end; j++) {
int pivot = -1;
for (int i = rank; i < height(); i++) {
if ((*this)[i][j] != T(0)) {
pivot = i;
break;
}
}
if (pivot == -1) {
det = 0;
continue;
}
if (pivot != rank) {
det = -det;
std::swap((*this)[pivot], (*this)[rank]);
}
det *= A[rank][j];
if (A[rank][j] != T(1)) {
T coef = T(1) / (*this)[rank][j];
for (int k = j; k < width(); k++) (*this)[rank][k] *= coef;
}
for (int i = 0; i < height(); i++) {
if (i == rank) continue;
T coef = (*this)[i][j];
if (coef == T(0)) continue;
for (int k = j; k < width(); k++) (*this)[i][k] -= (*this)[rank][k] * coef;
}
rank++;
}
return {rank, det};
}
};
using ll = long long;
using namespace std;
using mint = atcoder::modint998244353;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
int H, W;
cin >> H >> W;
vector A(H, vector<int>(W)), B(H, vector<int>(W));
cin >> A >> B;
Matrix<mint> C = Matrix<mint>::identity(H);
for (int i = 0; i < H; i++) {
for (int j = 0; j < H; j++) {
for (int k = 0; k < W; k++) {
C[i][j] += mint(A[i][k]) * B[j][k];
}
}
}
auto ans = C.det() - 1;
cout << ans.val() << "\n";
return 0;
}
rniya