結果
問題 | No.2825 Sum of Scores of Sets of Specified Sections |
ユーザー | rniya |
提出日時 | 2024-07-27 00:08:53 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 145 ms / 3,000 ms |
コード長 | 8,799 bytes |
コンパイル時間 | 3,420 ms |
コンパイル使用メモリ | 260,968 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-27 00:09:00 |
合計ジャッジ時間 | 6,106 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 145 ms
6,940 KB |
testcase_02 | AC | 145 ms
6,940 KB |
testcase_03 | AC | 145 ms
6,940 KB |
testcase_04 | AC | 19 ms
6,944 KB |
testcase_05 | AC | 5 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 12 ms
6,944 KB |
testcase_08 | AC | 8 ms
6,940 KB |
testcase_09 | AC | 5 ms
6,940 KB |
testcase_10 | AC | 5 ms
6,944 KB |
testcase_11 | AC | 3 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 5 ms
6,940 KB |
testcase_14 | AC | 24 ms
6,944 KB |
testcase_15 | AC | 24 ms
6,944 KB |
testcase_16 | AC | 25 ms
6,944 KB |
testcase_17 | AC | 25 ms
6,944 KB |
testcase_18 | AC | 24 ms
6,944 KB |
testcase_19 | AC | 25 ms
6,944 KB |
testcase_20 | AC | 25 ms
6,944 KB |
testcase_21 | AC | 25 ms
6,940 KB |
testcase_22 | AC | 25 ms
6,940 KB |
testcase_23 | AC | 24 ms
6,944 KB |
testcase_24 | AC | 5 ms
6,940 KB |
testcase_25 | AC | 6 ms
6,944 KB |
testcase_26 | AC | 5 ms
6,940 KB |
testcase_27 | AC | 5 ms
6,944 KB |
testcase_28 | AC | 2 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 61 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> #ifdef LOCAL #include <debug.hpp> #else #define debug(...) void(0) #endif template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) { for (auto& e : v) { is >> e; } return is; } template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) { for (std::string_view sep = ""; const auto& e : v) { os << std::exchange(sep, " ") << e; } return os; } template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = std::forward<U>(y), true); } template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = std::forward<U>(y), true); } template <class T> void mkuni(std::vector<T>& v) { std::ranges::sort(v); auto result = std::ranges::unique(v); v.erase(result.begin(), result.end()); } template <class T> int lwb(const std::vector<T>& v, const T& x) { return std::distance(v.begin(), std::ranges::lower_bound(v, x)); } #include <atcoder/modint> template <typename T> struct Matrix { std::vector<std::vector<T>> A; Matrix() = default; Matrix(int n, int m) : A(n, std::vector<T>(m, 0)) {} Matrix(int n) : A(n, std::vector<T>(n, 0)) {} bool empty() const { return A.empty(); } int size() const { return A.size(); } int height() const { return A.size(); } int width() const { assert(not A.empty()); return A[0].size(); } inline const std::vector<T>& operator[](int i) const { return A[i]; } inline std::vector<T>& operator[](int i) { return A[i]; } static Matrix identity(int n) { Matrix res(n); for (int i = 0; i < n; i++) res[i][i] = 1; return res; } Matrix& operator+=(const Matrix& B) { int n = height(), m = width(); assert(n == B.height() and m == B.width()); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { (*this)[i][j] += B[i][j]; } } return *this; } Matrix& operator-=(const Matrix& B) { int n = height(), m = width(); assert(n == B.height() and m == B.width()); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { (*this)[i][j] -= B[i][j]; } } return *this; } Matrix& operator*=(const Matrix& B) { int n = height(), m = B.width(), p = width(); assert(p == B.height()); std::vector<std::vector<T>> C(n, std::vector<T>(m, 0)); for (int i = 0; i < n; i++) { for (int k = 0; k < p; k++) { for (int j = 0; j < m; j++) { C[i][j] += (*this)[i][k] * B[k][j]; } } } std::swap(A, C); return *this; } Matrix& operator*=(const T& v) { for (int i = 0; i < height(); i++) { for (int j = 0; j < width(); j++) { (*this)[i][j] *= v; } } return *this; } Matrix& operator/=(const T& v) { T inv = T(1) / v; for (int i = 0; i < height(); i++) { for (int j = 0; j < width(); j++) { (*this)[i][j] *= inv; } } return *this; } Matrix operator-() const { Matrix res(height(), width()); for (int i = 0; i < height(); i++) { for (int j = 0; j < width(); j++) { res[i][j] = -(*this)[i][j]; } } return res; } Matrix operator+(const Matrix& B) const { return Matrix(*this) += B; } Matrix operator-(const Matrix& B) const { return Matrix(*this) -= B; } Matrix operator*(const Matrix& B) const { return Matrix(*this) *= B; } Matrix operator*(const T& v) const { return Matrix(*this) *= v; } Matrix operator/(const T& v) const { return Matrix(*this) /= v; } bool operator==(const Matrix& B) const { assert(height() == B.height() && width() == B.width()); return A == B.A; } bool operator!=(const Matrix& B) const { assert(height() == B.height() && width() == B.width()); return A != B.A; } Matrix pow(long long n) const { assert(0 <= n); Matrix x = *this, r = identity(size()); while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } Matrix transpose() const { Matrix res(width(), height()); for (int i = 0; i < height(); i++) { for (int j = 0; j < width(); j++) { res[j][i] = (*this)[i][j]; } } return res; } int rank() const { return Matrix(*this).gauss_jordan().first; } T det() const { return Matrix(*this).gauss_jordan().second; } Matrix inv() const { assert(height() == width()); int n = height(); Matrix B(*this); for (int i = 0; i < n; i++) { B[i].resize(2 * n, T(0)); B[i][n + i] = T(1); } int rank = B.gauss_jordan(n).first; if (rank != n) return {}; for (int i = 0; i < n; i++) { B[i].erase(B[i].begin(), B[i].begin() + n); } return B; } std::vector<std::vector<T>> system_of_linear_equations(const std::vector<T>& b) const { assert(height() == int(b.size())); int n = height(), m = width(); Matrix B(*this); for (int i = 0; i < n; i++) B[i].emplace_back(b[i]); int rank = B.gauss_jordan(m).first; for (int i = rank; i < n; i++) { if (B[i][m] != T(0)) { return {}; } } std::vector<std::vector<T>> res(1, std::vector<T>(m, 0)); std::vector<int> pivot(m, -1); for (int i = 0, j = 0; i < rank; i++) { while (B[i][j] == T(0)) j++; res[0][j] = B[i][m]; pivot[j] = i; } for (int j = 0; j < m; j++) { if (pivot[j] != -1) continue; std::vector<T> x(m); x[j] = 1; for (int k = 0; k < j; k++) { if (pivot[k] != -1) { x[k] = -B[pivot[k]][j]; } } res.emplace_back(x); } return res; } friend std::ostream& operator<<(std::ostream& os, const Matrix& p) { int n = p.height(), m = p.width(); os << "[(" << n << " * " << m << " Matrix)"; os << "\n[columun sums: "; for (int j = 0; j < m; j++) { T sum = 0; for (int i = 0; i < n; i++) sum += p[i][j]; os << sum << (j + 1 < m ? "," : ""); } os << "]"; for (int i = 0; i < n; i++) { os << "\n["; for (int j = 0; j < m; j++) os << p[i][j] << (j + 1 < m ? "," : ""); os << "]"; } os << "]\n"; return os; } private: std::pair<int, T> gauss_jordan(int pivot_end = -1) { if (empty()) return {0, T(1)}; if (pivot_end == -1) pivot_end = width(); int rank = 0; T det = 1; for (int j = 0; j < pivot_end; j++) { int pivot = -1; for (int i = rank; i < height(); i++) { if ((*this)[i][j] != T(0)) { pivot = i; break; } } if (pivot == -1) { det = 0; continue; } if (pivot != rank) { det = -det; std::swap((*this)[pivot], (*this)[rank]); } det *= A[rank][j]; if (A[rank][j] != T(1)) { T coef = T(1) / (*this)[rank][j]; for (int k = j; k < width(); k++) (*this)[rank][k] *= coef; } for (int i = 0; i < height(); i++) { if (i == rank) continue; T coef = (*this)[i][j]; if (coef == T(0)) continue; for (int k = j; k < width(); k++) (*this)[i][k] -= (*this)[rank][k] * coef; } rank++; } return {rank, det}; } }; using ll = long long; using namespace std; using mint = atcoder::modint998244353; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); int H, W; cin >> H >> W; vector A(H, vector<int>(W)), B(H, vector<int>(W)); cin >> A >> B; Matrix<mint> C = Matrix<mint>::identity(H); for (int i = 0; i < H; i++) { for (int j = 0; j < H; j++) { for (int k = 0; k < W; k++) { C[i][j] += mint(A[i][k]) * B[j][k]; } } } auto ans = C.det() - 1; cout << ans.val() << "\n"; return 0; }