結果

問題 No.650 行列木クエリ
ユーザー ei1333333
提出日時 2024-07-31 03:16:19
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 113 ms / 2,000 ms
コード長 15,140 bytes
コンパイル時間 4,891 ms
コンパイル使用メモリ 268,844 KB
最終ジャッジ日時 2025-02-23 19:35:37
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 10
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include<atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for (int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for (T &in: v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for (auto &e: t) fill_v(e, v);
}
template< typename F >
struct FixPoint: F {
explicit FixPoint(F &&f): F(std::forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, std::forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{std::forward< F >(f)};
}
template< typename Monoid >
struct SegmentTree {
using S = typename Monoid::S;
private:
int n, sz;
vector< S > seg;
Monoid t;
public:
SegmentTree() = default;
explicit SegmentTree(Monoid m, int n): t(m), n(n) {
sz = 1;
while (sz < n) sz <<= 1;
seg.assign(2 * sz, m.e());
}
explicit SegmentTree(Monoid m, const vector< S > &v)
: SegmentTree(m, (int) v.size()) {
build(v);
}
void build(const vector< S > &v) {
assert(n == (int) v.size());
for (int k = 0; k < n; k++) seg[k + sz] = v[k];
for (int k = sz - 1; k > 0; k--) {
seg[k] = t.op(seg[2 * k + 0], seg[2 * k + 1]);
}
}
void set(int k, const S &x) {
k += sz;
seg[k] = x;
while (k >>= 1) {
seg[k] = t.op(seg[2 * k + 0], seg[2 * k + 1]);
}
}
S get(int k) const { return seg[k + sz]; }
S operator[](const int &k) const { return get(k); }
void apply(int k, const S &x) {
k += sz;
seg[k] = t.op(seg[k], x);
while (k >>= 1) {
seg[k] = t.op(seg[2 * k + 0], seg[2 * k + 1]);
}
}
S prod(int l, int r) const {
S L = t.e(), R = t.e();
for (l += sz, r += sz; l < r; l >>= 1, r >>= 1) {
if (l & 1) L = t.op(L, seg[l++]);
if (r & 1) R = t.op(seg[--r], R);
}
return t.op(L, R);
}
S all_prod() const { return seg[1]; }
template< typename C >
int find_first(int l, const C &check) const {
if (l >= n) return n;
l += sz;
S sum = t.e();
do {
while ((l & 1) == 0) l >>= 1;
if (check(t.op(sum, seg[l]))) {
while (l < sz) {
l <<= 1;
auto nxt = t.op(sum, seg[l]);
if (not check(nxt)) {
sum = nxt;
l++;
}
}
return l + 1 - sz;
}
sum = t.op(sum, seg[l++]);
} while ((l & -l) != l);
return n;
}
template< typename C >
int find_last(int r, const C &check) const {
if (r <= 0) return -1;
r += sz;
S sum = t.e();
do {
r--;
while (r > 1 and (r & 1)) r >>= 1;
if (check(t.op(seg[r], sum))) {
while (r < sz) {
r = (r << 1) + 1;
auto nxt = t.op(seg[r], sum);
if (not check(nxt)) {
sum = nxt;
r--;
}
}
return r - sz;
}
sum = t.op(seg[r], sum);
} while ((r & -r) != r);
return -1;
}
};
template< class T, class OP, class E >
struct LambdaMonoid {
using S = T;
S op(const S &a, const S &b) const { return _op(a, b); }
S e() const { return _e(); }
LambdaMonoid(OP op, E e): _op(op), _e(e) {}
private:
OP _op;
E _e;
};
template< class OP, class E >
LambdaMonoid(OP op, E e)->LambdaMonoid< decltype(e()), OP, E >;
/*
struct Monoid {
using S = int;
static constexpr S op(const S& a, const S& b) {
return a + b;
}
static constexpr S e() {
return 0;
}
};
*/
template <typename T = int>
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1)
: from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template <typename T = int>
struct Graph {
vector<vector<Edge<T> > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const { return g.size(); }
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false,
bool directed = false) {
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if (weighted) cin >> c;
if (directed)
add_directed_edge(a, b, c);
else
add_edge(a, b, c);
}
}
inline vector<Edge<T> > &operator[](const int &k) { return g[k]; }
inline const vector<Edge<T> > &operator[](const int &k) const { return g[k]; }
};
template <typename T = int>
using Edges = vector<Edge<T> >;
#line 4 "graph/tree/heavy-light-decomposition.hpp"
/**
* @brief Heavy-Light-Decomposition(HL)
* @see https://smijake3.hatenablog.com/entry/2019/09/15/200200
*/
template <typename T = int>
struct HeavyLightDecomposition : Graph<T> {
public:
using Graph<T>::Graph;
using Graph<T>::g;
vector<int> sz, in, out, head, rev, par, dep;
void build(int root = 0) {
sz.assign(g.size(), 0);
in.assign(g.size(), 0);
out.assign(g.size(), 0);
head.assign(g.size(), 0);
rev.assign(g.size(), 0);
par.assign(g.size(), 0);
dep.assign(g.size(), 0);
dfs_sz(root, -1, 0);
int t = 0;
head[root] = root;
dfs_hld(root, -1, t);
}
/* k: 0-indexed */
int la(int v, int k) {
while (1) {
int u = head[v];
if (in[v] - k >= in[u]) return rev[in[v] - k];
k -= in[v] - in[u] + 1;
v = par[u];
}
}
int lca(int u, int v) const {
for (;; v = par[head[v]]) {
if (in[u] > in[v]) swap(u, v);
if (head[u] == head[v]) return u;
}
}
int dist(int u, int v) const { return dep[u] + dep[v] - 2 * dep[lca(u, v)]; }
template <typename E, typename Q, typename F, typename S>
E query(int u, int v, const E &ti, const Q &q, const F &f, const S &s,
bool edge = false) {
E l = ti, r = ti;
for (;; v = par[head[v]]) {
if (in[u] > in[v]) swap(u, v), swap(l, r);
if (head[u] == head[v]) break;
l = f(q(in[head[v]], in[v] + 1), l);
}
return s(f(q(in[u] + edge, in[v] + 1), l), r);
}
template <typename E, typename Q, typename F>
E query(int u, int v, const E &ti, const Q &q, const F &f,
bool edge = false) {
return query(u, v, ti, q, f, f, edge);
}
template <typename Q>
void add(int u, int v, const Q &q, bool edge = false) {
for (;; v = par[head[v]]) {
if (in[u] > in[v]) swap(u, v);
if (head[u] == head[v]) break;
q(in[head[v]], in[v] + 1);
}
q(in[u] + edge, in[v] + 1);
}
/* {parent, child} */
vector<pair<int, int> > compress(vector<int> &remark) {
auto cmp = [&](int a, int b) { return in[a] < in[b]; };
sort(begin(remark), end(remark), cmp);
remark.erase(unique(begin(remark), end(remark)), end(remark));
int K = (int)remark.size();
for (int k = 1; k < K; k++)
remark.emplace_back(lca(remark[k - 1], remark[k]));
sort(begin(remark), end(remark), cmp);
remark.erase(unique(begin(remark), end(remark)), end(remark));
vector<pair<int, int> > es;
stack<int> st;
for (auto &k : remark) {
while (!st.empty() && out[st.top()] <= in[k]) st.pop();
if (!st.empty()) es.emplace_back(st.top(), k);
st.emplace(k);
}
return es;
}
explicit HeavyLightDecomposition(const Graph<T> &g) : Graph<T>(g) {}
private:
void dfs_sz(int idx, int p, int d) {
dep[idx] = d;
par[idx] = p;
sz[idx] = 1;
if (g[idx].size() && g[idx][0] == p) swap(g[idx][0], g[idx].back());
for (auto &to : g[idx]) {
if (to == p) continue;
dfs_sz(to, idx, d + 1);
sz[idx] += sz[to];
if (sz[g[idx][0]] < sz[to]) swap(g[idx][0], to);
}
}
void dfs_hld(int idx, int p, int &times) {
in[idx] = times++;
rev[in[idx]] = idx;
for (auto &to : g[idx]) {
if (to == p) continue;
head[to] = (g[idx][0] == to ? head[idx] : to);
dfs_hld(to, idx, times);
}
out[idx] = times;
}
};
template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
private:
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod_;
for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod_) % mod_;
static_assert(r * mod_ == 1, "invalid, r * mod != 1");
static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
public:
MontgomeryModInt() : x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
}
mint &operator+=(const mint &p) {
if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
return *this;
}
mint &operator-=(const mint &p) {
if (i32(x -= p.x) < 0) x += 2 * mod();
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inv();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const {
return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
}
bool operator!=(const mint &p) const {
return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
}
u32 val() const {
u32 ret = reduce(x);
return ret >= mod() ? ret - mod() : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inv() const { return pow(mod() - 2); }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.val();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static constexpr u32 mod() { return mod_; }
};
template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
template <class T, size_t N>
struct SquareMatrix {
array<array<T, N>, N> A;
SquareMatrix() : A{{}} {}
size_t size() const { return N; }
inline const array<T, N> &operator[](int k) const { return (A.at(k)); }
inline array<T, N> &operator[](int k) { return (A.at(k)); }
static SquareMatrix add_identity() { return SquareMatrix(); }
static SquareMatrix mul_identity() {
SquareMatrix mat;
for (size_t i = 0; i < N; i++) mat[i][i] = 1;
return mat;
}
SquareMatrix &operator+=(const SquareMatrix &B) {
for (size_t i = 0; i < N; i++) {
for (size_t j = 0; j < N; j++) {
(*this)[i][j] += B[i][j];
}
}
return *this;
}
SquareMatrix &operator-=(const SquareMatrix &B) {
for (size_t i = 0; i < N; i++) {
for (size_t j = 0; j < N; j++) {
(*this)[i][j] -= B[i][j];
}
}
return *this;
}
SquareMatrix &operator*=(const SquareMatrix &B) {
array<array<T, N>, N> C;
for (size_t i = 0; i < N; i++) {
for (size_t j = 0; j < N; j++) {
for (size_t k = 0; k < N; k++) {
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
}
}
}
A.swap(C);
return (*this);
}
SquareMatrix &operator^=(uint64_t k) {
SquareMatrix B = SquareMatrix::mul_identity();
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return *this;
}
SquareMatrix operator+(const SquareMatrix &B) const {
return SquareMatrix(*this) += B;
}
SquareMatrix operator-(const SquareMatrix &B) const {
return SquareMatrix(*this) -= B;
}
SquareMatrix operator*(const SquareMatrix &B) const {
return SquareMatrix(*this) *= B;
}
SquareMatrix operator^(uint64_t k) const { return SquareMatrix(*this) ^= k; }
friend ostream &operator<<(ostream &os, SquareMatrix &p) {
for (int i = 0; i < N; i++) {
os << "[";
for (int j = 0; j < N; j++) {
os << p[i][j] << (j + 1 == N ? "]\n" : ",");
}
}
return os;
}
};
using mint = modint1000000007;
int main() {
int N;
cin >> N;
vector< int > X(N), Y(N);
HeavyLightDecomposition<> g(N);
for(int i = 1; i < N; i++) {
cin >> X[i] >> Y[i];
g.add_edge(X[i], Y[i]);
}
g.build();
for(int i = 1; i < N; i++) {
if(g.in[X[i]] > g.in[Y[i]]) swap(X[i], Y[i]);
}
using Mat = SquareMatrix< mint, 2 >;
auto f = [](const Mat &a, const Mat &b) { return a * b; };
auto seg = SegmentTree(LambdaMonoid(f, []() { return Mat::mul_identity();}), N);
int Q;
cin >> Q;
while(Q--) {
char x;
cin >> x;
if(x == 'x') {
int v;
cin >> v;
Mat m;
cin >> m[0][0] >> m[0][1] >> m[1][0] >> m[1][1];
seg.set(g.in[Y[v + 1]], m);
} else {
int y, z;
cin >> y >> z;
auto mat = g.query(y, z, Mat::mul_identity(), [&](int a, int b) { return seg.prod(a, b); }, f, true);
cout << mat[0][0] << " " << mat[0][1] << " " << mat[1][0] << " " << mat[1][1] << "\n";
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0