結果

問題 No.1720 Division Permutation
ユーザー ei1333333
提出日時 2024-08-02 18:30:09
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 226 ms / 4,000 ms
コード長 13,349 bytes
コンパイル時間 4,604 ms
コンパイル使用メモリ 262,060 KB
最終ジャッジ日時 2025-02-23 19:47:31
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 60
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "test/verify/yosupo-area-of-union-of-rectangles.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/area_of_union_of_rectangles
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using namespace std;
using int64 = long long;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template <typename T1, typename T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
template <typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {
return a > b && (a = b, true);
}
template <typename T = int64>
vector<T> make_v(size_t a) {
return vector<T>(a);
}
template <typename T, typename... Ts>
auto make_v(size_t a, Ts... ts) {
return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...));
}
template <typename T, typename V>
typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) {
t = v;
}
template <typename T, typename V>
typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) {
for (auto &e : t) fill_v(e, v);
}
template <typename F>
struct FixPoint : F {
explicit FixPoint(F &&f) : F(std::forward<F>(f)) {}
template <typename... Args>
decltype(auto) operator()(Args &&...args) const {
return F::operator()(*this, std::forward<Args>(args)...);
}
};
template <typename F>
inline decltype(auto) MFP(F &&f) {
return FixPoint<F>{std::forward<F>(f)};
}
#line 4 "test/verify/yosupo-area-of-union-of-rectangles.test.cpp"
template< typename ActedMonoid >
struct LazySegmentTree {
using S = typename ActedMonoid::S;
using F = typename ActedMonoid::F;
private:
ActedMonoid m;
int n{}, sz{}, height{};
vector< S > data;
vector< F > lazy;
inline void update(int k) { data[k] = m.op(data[2 * k + 0], data[2 * k + 1]); }
inline void all_apply(int k, const F &x) {
data[k] = m.mapping(data[k], x);
if (k < sz) lazy[k] = m.composition(lazy[k], x);
}
inline void propagate(int k) {
if (lazy[k] != m.id()) {
all_apply(2 * k + 0, lazy[k]);
all_apply(2 * k + 1, lazy[k]);
lazy[k] = m.id();
}
}
public:
LazySegmentTree() = default;
explicit LazySegmentTree(ActedMonoid m, int n): m(m), n(n) {
sz = 1;
height = 0;
while (sz < n) sz <<= 1, height++;
data.assign(2 * sz, m.e());
lazy.assign(2 * sz, m.id());
}
explicit LazySegmentTree(ActedMonoid m, const vector< S > &v)
: LazySegmentTree(m, v.size()) {
build(v);
}
void build(const vector< S > &v) {
assert(n == (int) v.size());
for (int k = 0; k < n; k++) data[k + sz] = v[k];
for (int k = sz - 1; k > 0; k--) update(k);
}
void set(int k, const S &x) {
k += sz;
for (int i = height; i > 0; i--) propagate(k >> i);
data[k] = x;
for (int i = 1; i <= height; i++) update(k >> i);
}
S get(int k) {
k += sz;
for (int i = height; i > 0; i--) propagate(k >> i);
return data[k];
}
S operator[](int k) { return get(k); }
S prod(int l, int r) {
if (l >= r) return m.e();
l += sz;
r += sz;
for (int i = height; i > 0; i--) {
if (((l >> i) << i) != l) propagate(l >> i);
if (((r >> i) << i) != r) propagate((r - 1) >> i);
}
S L = m.e(), R = m.e();
for (; l < r; l >>= 1, r >>= 1) {
if (l & 1) L = m.op(L, data[l++]);
if (r & 1) R = m.op(data[--r], R);
}
return m.op(L, R);
}
S all_prod() const { return data[1]; }
void apply(int k, const F &f) {
k += sz;
for (int i = height; i > 0; i--) propagate(k >> i);
data[k] = m.mapping(data[k], f);
for (int i = 1; i <= height; i++) update(k >> i);
}
void apply(int l, int r, const F &f) {
if (l >= r) return;
l += sz;
r += sz;
for (int i = height; i > 0; i--) {
if (((l >> i) << i) != l) propagate(l >> i);
if (((r >> i) << i) != r) propagate((r - 1) >> i);
}
{
int l2 = l, r2 = r;
for (; l < r; l >>= 1, r >>= 1) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
}
l = l2, r = r2;
}
for (int i = 1; i <= height; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template< typename C >
int find_first(int l, const C &check) {
if (l >= n) return n;
l += sz;
for (int i = height; i > 0; i--) propagate(l >> i);
S sum = m.e();
do {
while ((l & 1) == 0) l >>= 1;
if (check(m.op(sum, data[l]))) {
while (l < sz) {
propagate(l);
l <<= 1;
auto nxt = m.op(sum, data[l]);
if (not check(nxt)) {
sum = nxt;
l++;
}
}
return l + 1 - sz;
}
sum = m.op(sum, data[l++]);
} while ((l & -l) != l);
return n;
}
template< typename C >
int find_last(int r, const C &check) {
if (r <= 0) return -1;
r += sz;
for (int i = height; i > 0; i--) propagate((r - 1) >> i);
S sum = m.e();
do {
r--;
while (r > 1 and (r & 1)) r >>= 1;
if (check(m.op(data[r], sum))) {
while (r < sz) {
propagate(r);
r = (r << 1) + 1;
auto nxt = m.op(data[r], sum);
if (not check(nxt)) {
sum = nxt;
r--;
}
}
return r - sz;
}
sum = m.op(data[r], sum);
} while ((r & -r) != r);
return -1;
}
};
template< typename S2, typename Op, typename E, typename F2, typename Mapping, typename Composition, typename Id >
struct LambdaActedMonoid {
using S = S2;
using F = F2;
S op(const S &a, const S &b) const { return _op(a, b); }
S e() const { return _e(); }
S mapping(const S &x, const F &f) const { return _mapping(x, f); }
F composition(const F &f, const F &g) const { return _composition(f, g); }
F id() const { return _id(); }
LambdaActedMonoid(Op _op, E _e, Mapping _mapping, Composition _composition, Id _id):
_op(_op), _e(_e), _mapping(_mapping), _composition(_composition), _id(_id) {}
private:
Op _op;
E _e;
Mapping _mapping;
Composition _composition;
Id _id;
};
template< typename Op, typename E, typename Mapping, typename Composition, typename Id >
LambdaActedMonoid(Op _op, E _e, Mapping _mapping, Composition _composition, Id _id)
-> LambdaActedMonoid< decltype(_e()), Op, E, decltype(_id()), Mapping, Composition, Id >;
/*
struct ActedMonoid {
using S = ?;
using F = ?;
static constexpr S op(const S& a, const S& b) {}
static constexpr S e() {}
static constexpr F mapping(const S &x, const F &f) {}
static constexpr F composition(const F &f, const F &g) {}
static constexpr F id() const {}
};
*/
struct PermutationTree {
public:
enum NodeType { JOIN_ASC, JOIN_DESC, LEAF, CUT };
struct Node {
NodeType type;
int l, r; // [l, r)
int min_v, max_v; // [min_v, max_v)
vector<Node *> ch;
size_t size() const { return r - l; }
bool is_join() const { return type == JOIN_ASC or type == JOIN_DESC; };
bool is_leaf() const { return type == LEAF; }
bool is_cut() const { return type == CUT; }
};
using NP = Node *;
PermutationTree() = default;
private:
static void add_child(NP t, NP c) {
t->ch.emplace_back(c);
t->l = min(t->l, c->l);
t->r = max(t->r, c->r);
t->min_v = min(t->min_v, c->min_v);
t->max_v = max(t->max_v, c->max_v);
}
public:
static NP build(vector<int> &A) {
int n = (int)A.size();
vector<int> desc{-1};
vector<int> asc{-1};
vector<NP> st;
constexpr int lim = (1 << 30) - 1;
auto f = [](int a, int b) { return min(a, b); };
auto e = [&]() { return lim; };
auto g = [](int a, int b) { return a + b; };
auto id = []() { return 0; };
LazySegmentTree seg(LambdaActedMonoid(f, e, g, g, id), vector<int>(n));
for (int i = 0; i < n; i++) {
while (~desc.back() and A[i] > A[desc.back()]) {
seg.apply(desc[desc.size() - 2] + 1, desc.back() + 1,
A[i] - A[desc.back()]);
desc.pop_back();
}
while (~asc.back() and A[i] < A[asc.back()]) {
seg.apply(asc[asc.size() - 2] + 1, asc.back() + 1,
A[asc.back()] - A[i]);
asc.pop_back();
}
desc.emplace_back(i);
asc.emplace_back(i);
NP t = new Node{LEAF, i, i + 1, A[i], A[i] + 1, {}};
for (;;) {
NodeType type = CUT;
if (not st.empty()) {
if (st.back()->max_v == t->min_v) {
type = JOIN_ASC;
} else if (t->max_v == st.back()->min_v) {
type = JOIN_DESC;
}
}
if (type != CUT) {
NP r = st.back();
if (type != r->type) {
r = new Node{type, r->l, r->r, r->min_v, r->max_v, {r}};
}
add_child(r, t);
st.pop_back();
t = r;
} else if (seg.prod(0, i + 1 - (int)t->size()) == 0) {
t = new Node{CUT, t->l, t->r, t->min_v, t->max_v, {t}};
do {
add_child(t, st.back());
st.pop_back();
} while (t->max_v - t->min_v != t->size());
reverse(begin(t->ch), end(t->ch));
} else {
break;
}
}
st.emplace_back(t);
seg.apply(0, i + 1, -1);
}
return st[0];
}
};
template <uint32_t mod_, bool fast = false>
struct MontgomeryModInt {
private:
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod_;
for (i32 i = 0; i < 4; i++) ret *= 2 - mod_ * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod_) % mod_;
static_assert(r * mod_ == 1, "invalid, r * mod != 1");
static_assert(mod_ < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod_ & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
public:
MontgomeryModInt() : x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod() + mod())) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod() - u32((u64(u32(b) * r) * mod()) >> 32);
}
mint &operator+=(const mint &p) {
if (i32(x += p.x - 2 * mod()) < 0) x += 2 * mod();
return *this;
}
mint &operator-=(const mint &p) {
if (i32(x -= p.x) < 0) x += 2 * mod();
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inv();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const {
return (x >= mod() ? x - mod() : x) == (p.x >= mod() ? p.x - mod() : p.x);
}
bool operator!=(const mint &p) const {
return (x >= mod() ? x - mod() : x) != (p.x >= mod() ? p.x - mod() : p.x);
}
u32 val() const {
u32 ret = reduce(x);
return ret >= mod() ? ret - mod() : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inv() const { return pow(mod() - 2); }
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.val();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static constexpr u32 mod() { return mod_; }
};
template <uint32_t mod>
using modint = MontgomeryModInt<mod>;
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;
using mint = modint998244353;
int main() {
int N, K;
cin >> N >> K;
vector< int > A(N);
cin >> A;
for(auto &a: A) --a;
using NP = PermutationTree::Node *;
auto dp = make_v< mint >(K + 1, N + 1);
dp[0][0] = 1;
MFP([&](auto rec, NP r) -> void {
if(r->is_cut() or r->is_leaf()) {
for(int k = 0; k < K; k++) {
dp[k + 1][r->r] += dp[k][r->l];
}
}
vector< mint > sum(K);
for(auto &c: r->ch) {
rec(c);
if(r->is_join()) {
for(int k = 0; k < K; k++) {
dp[k + 1][c->r] += sum[k];
sum[k] += dp[k][c->l];
}
}
}
})(PermutationTree::build(A));
for(int i = 1; i <= K; i++) {
cout << dp[i][N] << "\n";
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0