結果

問題 No.380 悪の台本
ユーザー LeonardoneLeonardone
提出日時 2016-06-25 18:32:47
言語 Haskell
(9.10.1)
結果
WA  
実行時間 -
コード長 849 bytes
コンパイル時間 6,039 ms
コンパイル使用メモリ 175,232 KB
実行使用メモリ 8,576 KB
最終ジャッジ日時 2024-11-06 23:02:00
合計ジャッジ時間 6,727 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample WA * 2
other WA * 6 RE * 2
権限があれば一括ダウンロードができます
コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.8.2/environments/default
[1 of 2] Compiling Main             ( Main.hs, Main.o )

Main.hs:25:25: warning: [GHC-63394] [-Wx-partial]
    In the use of ‘head’
    (imported from Prelude, but defined in GHC.List):
    "This is a partial function, it throws an error on empty lists. Use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty."
   |
25 |     ans = map (\k -> f (head k) (map (map h) $ tail k)) x
   |                         ^^^^

Main.hs:25:48: warning: [GHC-63394] [-Wx-partial]
    In the use of ‘tail’
    (imported from Prelude, but defined in GHC.List):
    "This is a partial function, it throws an error on empty lists. Replace it with drop 1, or use pattern matching or Data.List.uncons instead. Consider refactoring to use Data.List.NonEmpty."
   |
25 |     ans = map (\k -> f (head k) (map (map h) $ tail k)) x
   |                                                ^^^^
[2 of 2] Linking a.out

ソースコード

diff #

-- yukicoder My Practice
-- author: Leonardone @ NEETSDKASU
import Data.Char (toLower, isAlphaNum, isSpace)
import Data.List (inits, isSuffixOf)

main = putStrLn . solve . map words . lines =<< getContents where

solve x = unlines ans where
    h c | isAlphaNum c = toLower c
    h c | isSpace c = c
    h _ = '.'
    res True  = "CORRECT (maybe)"
    res False = "WRONG!"
    digi_suffix = drop 3 $ inits "nyo..."
    petit_suffix = drop 3 $ inits "nyu..."
    gema_suffix = drop 4 $ inits "gema..."
    piyo_suffix = drop 3 $ inits "pyo..."
    g s = res . or . map (`isSuffixOf` last s)
    f "digi" s = g s digi_suffix
    f "petit" s = g s petit_suffix
    f "gema" s = g s gema_suffix
    f "piyo" s = g s piyo_suffix
    f "rabi" s = res $ any (any isAlphaNum) s
    f _ _ = res True
    ans = map (\k -> f (head k) (map (map h) $ tail k)) x
0