結果
問題 | No.2829 GCD Divination |
ユーザー | Tatsu_mr |
提出日時 | 2024-08-02 21:48:53 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,160 bytes |
コンパイル時間 | 2,629 ms |
コンパイル使用メモリ | 217,988 KB |
実行使用メモリ | 159,832 KB |
最終ジャッジ日時 | 2024-08-02 21:48:59 |
合計ジャッジ時間 | 4,447 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 58 ms
159,832 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | AC | 25 ms
71,640 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; using ld = long double; template <class T> T modpow(T a, T b, T mod) { T cur = a % mod, res = 1 % mod; while (b) { if (b & 1) { res = (res * cur) % mod; } cur = (cur * cur) % mod; b >>= 1; } return res; } bool MillerRabin(long long n) { if (n <= 1) { return false; } if (n == 2 || n == 7 || n == 61) { return true; } if (n % 2 == 0) { return false; } vector<long long> A; if (n < 4759123141) { A = {2, 7, 61}; } else { A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; } long long s = 0, d = n - 1; while (d % 2 == 0) { s++; d >>= 1; } for (auto a : A) { if (a % n == 0) { return true; } long long x = modpow<__int128_t>(a, d, n); if (x == 1) { continue; } bool ok = false; for (int i = 0; i < s; i++) { if (x == n - 1) { ok = true; break; } x = (__int128_t)x * x % n; } if (!ok) { return false; } } return true; } long long gcd(long long x, long long y) { if (y == 0) { return x; } return gcd(y, x % y); } unsigned int xorshift() { static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123; unsigned int t = (x ^ (x << 11)); x = y; y = z; z = w; return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8))); } long long Pollard(long long n) { if (n % 2 == 0) { return 2LL; } if (MillerRabin(n)) { return n; } long long i = 0; while (true) { i++; long long r = xorshift(); auto f = [&](long long x) { return (__int128_t(x) * x + r) % n; }; long long x = i, y = f(x); while (true) { long long p = gcd(abs(y - x + n), n); if (p == 0 || p == n) { break; } if (p != 1) { return p; } x = f(x); y = f(f(y)); } } } vector<long long> prime_factorize(long long n) { if (n == 1) { return {}; } long long p = Pollard(n); if (p == n) { return {p}; } vector<long long> l = prime_factorize(p); vector<long long> r = prime_factorize(n / p); for (auto x : r) { l.emplace_back(x); } sort(l.begin(), l.end()); return l; } vector<long long> divisors(long long n) { if (n == 1) { return {1LL}; } auto divisor_dfs = [&](auto divisor_dfs, vector<pair<long long, long long>> &p, long long t, int cur, vector<long long> &res) -> void { if (cur == p.size()) { res.push_back(t); return; } divisor_dfs(divisor_dfs, p, t, cur + 1, res); for (int i = 0; i < p[cur].second; i++) { t *= p[cur].first; divisor_dfs(divisor_dfs, p, t, cur + 1, res); } }; vector<long long> res, pf = prime_factorize(n); vector<pair<long long, long long>> p; long long cnt = 1, now = pf[0]; for (int i = 1; i < (int)pf.size(); i++) { if (pf[i] == now) { cnt++; } else { p.push_back({now, cnt}); now = pf[i]; cnt = 1; } } p.push_back({now, cnt}); divisor_dfs(divisor_dfs, p, 1, 0, res); sort(res.begin(), res.end()); return res; } int main() { long long n; cin >> n; vector<ld> dp(n + 1, -1); dp[1] = 0.0; auto f = [&](auto f, long long x) -> ld { if (dp[x] != -1) { return dp[x]; } vector<long long> divs = divisors(x); ld res = x; for (auto d : divs) { if (d == x) { continue; } auto g = gcd(x, d); res += f(f, g); } res /= (ld)(x - 1); dp[x] = res; return res; }; cout << fixed << setprecision(15) << f(f, n) << endl; }