結果

問題 No.2829 GCD Divination
ユーザー Tatsu_mr
提出日時 2024-08-02 22:42:13
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 117 ms / 2,000 ms
コード長 4,535 bytes
コンパイル時間 2,640 ms
コンパイル使用メモリ 211,312 KB
最終ジャッジ日時 2025-02-23 20:13:48
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 35
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using ld = long double;
template <class T>
T modpow(T a, T b, T mod) {
T cur = a % mod, res = 1 % mod;
while (b) {
if (b & 1) {
res = (res * cur) % mod;
}
cur = (cur * cur) % mod;
b >>= 1;
}
return res;
}
bool MillerRabin(long long n) {
if (n <= 1) {
return false;
}
if (n == 2 || n == 7 || n == 61) {
return true;
}
if (n % 2 == 0) {
return false;
}
vector<long long> A;
if (n < 4759123141) {
A = {2, 7, 61};
} else {
A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
}
long long s = 0, d = n - 1;
while (d % 2 == 0) {
s++;
d >>= 1;
}
for (auto a : A) {
if (a % n == 0) {
return true;
}
long long x = modpow<__int128_t>(a, d, n);
if (x == 1) {
continue;
}
bool ok = false;
for (int i = 0; i < s; i++) {
if (x == n - 1) {
ok = true;
break;
}
x = (__int128_t)x * x % n;
}
if (!ok) {
return false;
}
}
return true;
}
long long gcd(long long x, long long y) {
if (y == 0) {
return x;
}
return gcd(y, x % y);
}
unsigned int xorshift() {
static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123;
unsigned int t = (x ^ (x << 11));
x = y;
y = z;
z = w;
return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)));
}
long long Pollard(long long n) {
if (n % 2 == 0) {
return 2LL;
}
if (MillerRabin(n)) {
return n;
}
long long i = 0;
while (true) {
i++;
long long r = xorshift();
auto f = [&](long long x) {
return (__int128_t(x) * x + r) % n;
};
long long x = i, y = f(x);
while (true) {
long long p = gcd(abs(y - x + n), n);
if (p == 0 || p == n) {
break;
}
if (p != 1) {
return p;
}
x = f(x);
y = f(f(y));
}
}
}
vector<long long> prime_factorize(long long n) {
if (n == 1) {
return {};
}
long long p = Pollard(n);
if (p == n) {
return {p};
}
vector<long long> l = prime_factorize(p);
vector<long long> r = prime_factorize(n / p);
for (auto x : r) {
l.emplace_back(x);
}
sort(l.begin(), l.end());
return l;
}
vector<long long> divisors(long long n) {
if (n == 1) {
return {1LL};
}
auto divisor_dfs = [&](auto divisor_dfs, vector<pair<long long, long long>> &p, long long t, int cur, vector<long long> &res) -> void {
if (cur == p.size()) {
res.push_back(t);
return;
}
divisor_dfs(divisor_dfs, p, t, cur + 1, res);
for (int i = 0; i < p[cur].second; i++) {
t *= p[cur].first;
divisor_dfs(divisor_dfs, p, t, cur + 1, res);
}
};
vector<long long> res, pf = prime_factorize(n);
vector<pair<long long, long long>> p;
long long cnt = 1, now = pf[0];
for (int i = 1; i < (int)pf.size(); i++) {
if (pf[i] == now) {
cnt++;
} else {
p.push_back({now, cnt});
now = pf[i];
cnt = 1;
}
}
p.push_back({now, cnt});
divisor_dfs(divisor_dfs, p, 1, 0, res);
sort(res.begin(), res.end());
return res;
}
int main() {
long long n;
cin >> n;
vector<ld> dp(n + 1, -1);
dp[1] = 0.0;
auto f = [&](auto f, long long x) -> ld {
if (dp[x] != -1) {
return dp[x];
}
ld res = (ld)x;
vector<long long> divs = divisors(x);
vector<int> cnt(divs.back() + 1);
for (int i = (int)divs.size() - 1; i >= 0; i--) {
int d = divs[i];
if (i == (int)divs.size() - 1) {
cnt[d] = 1;
continue;
}
int num = x / d;
for (int j = i + 1; j < (int)divs.size(); j++) {
if (divs[j] % divs[i] == 0) {
num -= cnt[divs[j]];
}
}
cnt[divs[i]] = num;
res += f(f, divs[i]) * (ld)num;
}
res /= (ld)(x - 1);
dp[x] = res;
return res;
};
cout << fixed << setprecision(15) << f(f, n) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0