結果

問題 No.2829 GCD Divination
ユーザー pitP
提出日時 2024-08-02 22:51:07
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 6,188 bytes
コンパイル時間 6,472 ms
コンパイル使用メモリ 337,304 KB
実行使用メモリ 200,344 KB
最終ジャッジ日時 2024-08-02 22:51:51
合計ジャッジ時間 40,567 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 15 WA * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); }
istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }
istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); }
typedef long long ll;
typedef vector<vector<int>> Graph;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define FOR(i,l,r) for (int i = l;i < (int)(r); i++)
#define rep(i,n) for (int i = 0;i < (int)(n); i++)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define my_sort(x) sort(x.begin(), x.end())
#define my_max(x) *max_element(all(x))
#define my_min(x) *min_element(all(x))
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
const int INF = (1<<30) - 1;
const ll LINF = (1LL<<62) - 1;
const int MOD = 998244353;
const int MOD2 = 1e9+7;
const double PI = acos(-1);
vector<int> di = {1,0,-1,0};
vector<int> dj = {0,1,0,-1};
#ifdef LOCAL
# include <debug_print.hpp>
# define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
# define debug(...) (static_cast<void>(0))
#endif
// https://qiita.com/drken/items/3beb679e54266f20ab63
struct Eratosthenes{
int N;
vector<bool> isprime;
vector<int> minfactor, mobius;
Eratosthenes(int N_max = 1e7){init(N_max);}
//
void init(int N_max = 1e7){
int N = N_max;
isprime.assign(N+1,true);
minfactor.assign(N+1,-1);
mobius.assign(N+1,1);
//Eratosthenes O(NloglogN)
isprime[0] = false;
isprime[1] = false;
for(int p=2;p<=N;p++){
if (!isprime[p])continue;
minfactor[p] = p;
mobius[p] = -1;
//p
for(int q=2*p;q<=N;q+=p){
isprime[q] = false;
if (minfactor[q] == -1){
minfactor[q] = p;
}
if ((q/p) % p == 0) mobius[q] = 0;
else mobius[q] *= -1;
}
}
}
//,O(1)
bool judge_prime(int num){
return isprime[num];
}
//,O(N)
vector<int> list_primes(int num = -1){
if (num == -1) num = N;
vector<int> primes;
for(int p=0;p<=num;p++){
if (isprime[p]) primes.push_back(p);
}
return primes;
}
//,O(logN),{(,)...}
vector<pii> factorize(int x){
vector<pii> ans;
while(x > 1){
int p = minfactor[x];
int e = 0;
while(minfactor[x] == p){
x /= p;
e++;
}
ans.push_back(make_pair(p,e));
}
return ans;
}
// O(240(N <= 1e6),1344(N <= 1e9))
vector<int> divisors(int x){
vector<int> ans; ans.push_back(1);
vector<pii> facts = factorize(x);
for(auto [p,e]:facts){
int s = ans.size();
for(int i=0;i<s;i++){
int v = 1;
for(int j=0;j<e;j++){
v *= p;
ans.push_back(ans[i] * v);
}
}
}
sort(all(ans));
return ans;
}
//phi
ll euler_phi(int x){
auto facts = factorize(x);
ll res = x;
for(auto [p, e]:facts){
res = res - res / p;
}
return res;
}
//
//mobius[1] = 1
//np2 -> mobius[n] = 0
//mobius[n] = pow(-1,N)
int my_mobius(int x){
return mobius[x];
}
};
// f -> F, F
template<typename T>
vector<T> fast_zeta(vector<T> &f){
vector<T> res = f;
int N = f.size() - 1;
Eratosthenes er(N);
for(int p=2;p<=N;p++){
if (!er.judge_prime(p)) continue;
for(int k=(N/p);k>0;k--){
res[k] += res[k * p];
}
}
return res;
}
// // F -> f, F
// template<typename T>
// vector<T> fast_mobius(vector<T> &F){
// vector<T> res = F;
// int N = F.size() - 1;
// Eratosthenes er(N);
// for(int p=2;p<=N;p++){
// if (!er.judge_prime(p)) continue;
// for(int k=1;k<=(N/p);k++){
// res[k] -= res[k * p];
// }
// }
// return res;
// }
template<typename T>
vector<T> gcd_conv(vector<T> &f, vector<T> &g){
int N = max(f.size(), g.size());
vector<T> F(N+1) , G(N+1), H(N+1);
for(int i=0;i<f.size();i++){
F[i] = f[i];
}
for(int i=0;i<g.size();i++){
G[i] = g[i];
}
F = fast_zeta(F);
G = fast_zeta(G);
for(int i=1;i<=N;i++){
H[i] = F[i] * G[i];
}
H = fast_mobius(H);
return H;
}
const int L = 1e7;
int main(){
cin.tie(0);
ios_base::sync_with_stdio(false);
Eratosthenes er(L);
vector<int> F(L + 1);
auto fast_mobius = [&](int N){
for(int p=2;p<=N;p++){
if (!er.judge_prime(p)) continue;
for(int k=1;k<=(N/p);k++){
F[k] -= F[k * p];
}
}
};
vector<double> memo(L + 1, -1);
memo[1] = 0.0;
function<double(int)> dp = [&](int x){
if(memo[x] >= 0.0) return memo[x];
auto divs = er.divisors(x);
for(auto &M : divs) F[M] = x / M;
fast_mobius(x);
double acc = 0.0;
for(auto &M : divs) {
if(M == x || M == 1) continue;
acc += (double)F[M] * dp(M);
}
memo[x] = (acc + (double)x) / (double)(x - 1);
return memo[x];
};
int N; cin >> N;
cout << fixed << setprecision(15) << dp(N) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0