結果
問題 | No.2829 GCD Divination |
ユーザー |
|
提出日時 | 2024-08-02 22:56:16 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,187 bytes |
コンパイル時間 | 6,528 ms |
コンパイル使用メモリ | 338,836 KB |
実行使用メモリ | 200,344 KB |
最終ジャッジ日時 | 2024-08-02 22:56:57 |
合計ジャッジ時間 | 39,047 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 15 WA * 20 |
ソースコード
#include <bits/stdc++.h>#include <atcoder/all>using namespace std;using namespace atcoder;istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; }ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); }istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); }typedef long long ll;typedef vector<vector<int>> Graph;typedef pair<int, int> pii;typedef pair<ll, ll> pll;#define FOR(i,l,r) for (int i = l;i < (int)(r); i++)#define rep(i,n) for (int i = 0;i < (int)(n); i++)#define all(x) x.begin(), x.end()#define rall(x) x.rbegin(), x.rend()#define my_sort(x) sort(x.begin(), x.end())#define my_max(x) *max_element(all(x))#define my_min(x) *min_element(all(x))template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }const int INF = (1<<30) - 1;const ll LINF = (1LL<<62) - 1;const int MOD = 998244353;const int MOD2 = 1e9+7;const double PI = acos(-1);vector<int> di = {1,0,-1,0};vector<int> dj = {0,1,0,-1};#ifdef LOCAL# include <debug_print.hpp># define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)#else# define debug(...) (static_cast<void>(0))#endif// https://qiita.com/drken/items/3beb679e54266f20ab63struct Eratosthenes{int N;vector<bool> isprime;vector<int> minfactor, mobius;Eratosthenes(int N_max = 1e7){init(N_max);}//初期化void init(int N_max = 1e7){int N = N_max;isprime.assign(N+1,true);minfactor.assign(N+1,-1);mobius.assign(N+1,1);//Eratosthenes O(NloglogN)isprime[0] = false;isprime[1] = false;for(int p=2;p<=N;p++){if (!isprime[p])continue;minfactor[p] = p;mobius[p] = -1;//pの倍数の処理for(int q=2*p;q<=N;q+=p){isprime[q] = false;if (minfactor[q] == -1){minfactor[q] = p;}if ((q/p) % p == 0) mobius[q] = 0;else mobius[q] *= -1;}}}//素数判定,O(1)bool judge_prime(int num){return isprime[num];}//素数列挙,O(N)vector<int> list_primes(int num = -1){if (num == -1) num = N;vector<int> primes;for(int p=0;p<=num;p++){if (isprime[p]) primes.push_back(p);}return primes;}//高速素因数分解,O(logN),{(素因数,個数)...}vector<pii> factorize(int x){vector<pii> ans;while(x > 1){int p = minfactor[x];int e = 0;while(minfactor[x] == p){x /= p;e++;}ans.push_back(make_pair(p,e));}return ans;}//高速約数列挙 O(240(N <= 1e6),1344(N <= 1e9))vector<int> divisors(int x){vector<int> ans; ans.push_back(1);vector<pii> facts = factorize(x);for(auto [p,e]:facts){int s = ans.size();for(int i=0;i<s;i++){int v = 1;for(int j=0;j<e;j++){v *= p;ans.push_back(ans[i] * v);}}}sort(all(ans));return ans;}//オイラーのphi関数ll euler_phi(int x){auto facts = factorize(x);ll res = x;for(auto [p, e]:facts){res = res - res / p;}return res;}//メビウス関数//mobius[1] = 1//nが素数pで2回以上割り切れる -> mobius[n] = 0//mobius[n] = pow(-1,Nの素数の種類)int my_mobius(int x){return mobius[x];}};// f -> F, 累積和Fを求めるtemplate<typename T>vector<T> fast_zeta(vector<T> &f){vector<T> res = f;int N = f.size() - 1;Eratosthenes er(N);for(int p=2;p<=N;p++){if (!er.judge_prime(p)) continue;for(int k=(N/p);k>0;k--){res[k] += res[k * p];}}return res;}// // F -> f, 累積和Fを分解する// template<typename T>// vector<T> fast_mobius(vector<T> &F){// vector<T> res = F;// int N = F.size() - 1;// Eratosthenes er(N);// for(int p=2;p<=N;p++){// if (!er.judge_prime(p)) continue;// for(int k=1;k<=(N/p);k++){// res[k] -= res[k * p];// }// }// return res;// }template<typename T>vector<T> gcd_conv(vector<T> &f, vector<T> &g){int N = max(f.size(), g.size());vector<T> F(N+1) , G(N+1), H(N+1);for(int i=0;i<f.size();i++){F[i] = f[i];}for(int i=0;i<g.size();i++){G[i] = g[i];}F = fast_zeta(F);G = fast_zeta(G);for(int i=1;i<=N;i++){H[i] = F[i] * G[i];}H = fast_mobius(H);return H;}const int L = 1e7;int main(){cin.tie(0);ios_base::sync_with_stdio(false);Eratosthenes er(L);vector<int> F(L + 1);auto fast_mobius = [&](int N){for(int p=2;p<=N;p++){if (!er.judge_prime(p)) continue;for(int k=1;k<=(N/p);k++){F[k] -= F[k * p];}}};vector<double> memo(L + 1, -1);memo[1] = 0.0;function<double(int)> dp = [&](int x){if(memo[x] >= 0.0) return memo[x];auto divs = er.divisors(x);for(auto &M : divs) F[M] = x / M;fast_mobius(x);double acc = 0.0;for(auto &M : divs) {if(M == x || M == 1) continue;acc += (double)F[M] * dp(M);}memo[x] = (acc + (double)x) / (double)(x - 1);return memo[x];};int N; cin >> N;cout << fixed << setprecision(15) << dp(N) << endl;}