結果
問題 | No.2832 Nana's Fickle Adventure |
ユーザー | noya2 |
提出日時 | 2024-08-02 23:49:35 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 35,310 bytes |
コンパイル時間 | 3,501 ms |
コンパイル使用メモリ | 283,376 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-08-02 23:49:42 |
合計ジャッジ時間 | 7,199 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 29 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 54 ms
6,940 KB |
testcase_04 | AC | 28 ms
6,940 KB |
testcase_05 | AC | 6 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 8 ms
6,940 KB |
testcase_09 | AC | 5 ms
6,940 KB |
testcase_10 | AC | 8 ms
6,940 KB |
testcase_11 | AC | 52 ms
6,940 KB |
testcase_12 | AC | 54 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 1 ms
6,944 KB |
testcase_16 | AC | 1 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 101 ms
6,944 KB |
testcase_19 | AC | 124 ms
6,940 KB |
testcase_20 | AC | 102 ms
6,940 KB |
testcase_21 | AC | 105 ms
6,940 KB |
testcase_22 | AC | 94 ms
6,944 KB |
testcase_23 | AC | 100 ms
6,940 KB |
testcase_24 | AC | 112 ms
6,944 KB |
testcase_25 | AC | 99 ms
6,940 KB |
testcase_26 | AC | 120 ms
6,944 KB |
testcase_27 | AC | 5 ms
6,944 KB |
testcase_28 | AC | 8 ms
6,940 KB |
testcase_29 | AC | 58 ms
6,940 KB |
testcase_30 | AC | 83 ms
6,944 KB |
testcase_31 | AC | 102 ms
6,944 KB |
testcase_32 | AC | 32 ms
6,944 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 8 ms
6,944 KB |
testcase_36 | AC | 1 ms
6,940 KB |
testcase_37 | AC | 108 ms
6,944 KB |
testcase_38 | AC | 2 ms
6,940 KB |
testcase_39 | AC | 54 ms
6,940 KB |
testcase_40 | AC | 28 ms
6,944 KB |
testcase_41 | AC | 54 ms
6,944 KB |
testcase_42 | AC | 56 ms
6,940 KB |
testcase_43 | AC | 106 ms
6,944 KB |
testcase_44 | AC | 4 ms
6,940 KB |
testcase_45 | AC | 2 ms
6,944 KB |
testcase_46 | AC | 3 ms
6,944 KB |
testcase_47 | WA | - |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << std::min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(std::vector<T> &v){ std::sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" #line 2 "/Users/noya2/Desktop/Noya2_library/graph/graph_query.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #include<ranges> #line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" namespace noya2::internal { template<class E> struct csr { csr () {} csr (int _n) : n(_n) {} csr (int _n, int m) : n(_n){ start.reserve(m); elist.reserve(m); } // ACL style constructor (do not have to call build) csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) { for (auto &[i, e] : idx_elem){ start[i + 2]++; } for (int i = 1; i < n; i++){ start[i + 2] += start[i + 1]; } for (auto &[i, e] : idx_elem){ elist[start[i + 1]++] = e; } prepared = true; } int add(int idx, E elem){ int eid = start.size(); start.emplace_back(idx); elist.emplace_back(elem); return eid; } void build(){ if (prepared) return ; int m = start.size(); std::vector<E> nelist(m); std::vector<int> nstart(n + 2, 0); for (int i = 0; i < m; i++){ nstart[start[i] + 2]++; } for (int i = 1; i < n; i++){ nstart[i + 2] += nstart[i + 1]; } for (int i = 0; i < m; i++){ nelist[nstart[start[i] + 1]++] = elist[i]; } swap(elist,nelist); swap(start,nstart); prepared = true; } const auto operator[](int idx) const { return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } auto operator[](int idx){ return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } const auto operator()(int idx, int l, int r) const { return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } auto operator()(int idx, int l, int r){ return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } int n; std::vector<int> start; std::vector<E> elist; bool prepared = false; }; } // namespace noya2::internal #line 2 "/Users/noya2/Desktop/Noya2_library/graph/unweighted_type.hpp" namespace noya2 { struct unweighted {}; } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/graph/graph_query.hpp" #line 12 "/Users/noya2/Desktop/Noya2_library/graph/graph_query.hpp" namespace noya2 { template<typename Cost> struct graph { int n; internal::csr<std::pair<int,Cost>> g; Cost dist_inf = std::numeric_limits<Cost>::max() / 2; graph (int _n = 0) : n(_n), g(_n) {} graph (int _n, int _m) : n(_n), g(_n,_m) {} // 有向辺を追加 (無向辺ではないことに注意!) int add_edge(int u, int v, Cost cost = 1){ int id = g.add(u, {v,cost}); return id; } template<bool directed> static graph input(int _n, int _m, int indexed = 1){ if constexpr (directed){ graph g(_n, _m*2); for (int i = 0; i < _m; i++){ int u, v; std::cin >> u >> v; u -= indexed, v -= indexed; Cost c; std::cin >> c; g.add_edge(u, v, c); g.add_edge(v, u, c); } g.build(); return g; } else { graph g(_n, _m); for (int i = 0; i < _m; i++){ int u, v; std::cin >> u >> v; u -= indexed, v -= indexed; Cost c; std::cin >> c; g.add_edge(u, v, c); } g.build(); return g; } } void build(){ g.build(); } void set_inf(Cost new_inf){ dist_inf = new_inf; } std::vector<Cost> dijkstra(int s){ g.build(); std::vector<Cost> dist(n,dist_inf); dist[s] = 0; using P = std::pair<Cost,int>; std::priority_queue<P,std::vector<P>,std::greater<P>> pque; pque.push(P(0,s)); while (!pque.empty()){ auto [d, v] = pque.top(); pque.pop(); if (dist[v] < d) continue; for (auto [u, c] : g[v]){ if (chmin(dist[u],d+c)){ pque.push(P(dist[u],u)); } } } return dist; } std::vector<int> reconstruct(int s, int t, const std::vector<Cost> &dist){ if (dist[t] == dist_inf) return {}; g.build(); std::vector<int> from(n,-1); std::queue<int> que; que.push(s); while (!que.empty()){ int v = que.front(); que.pop(); for (auto [u, c] : g[v]){ if (from[u] == -1 && dist[u] == dist[v] + c){ from[u] = v; que.push(u); } } } std::vector<int> ans = {t}; while (t != s){ t = from[t]; ans.emplace_back(t); } std::reverse(ans.begin(),ans.end()); return ans; } std::vector<Cost> bfs01(int s){ g.build(); std::vector<Cost> dist(n,dist_inf); dist[s] = 0; std::deque<int> que; que.push_back(s); while (!que.empty()){ int v = que.front(); que.pop_front(); for (auto [u, c] : g[v]){ if (chmin(dist[u],dist[v]+c)){ if (c == 0) que.push_front(u); else que.push_back(u); } } } return dist; } std::vector<Cost> bfs1(int s){ g.build(); std::vector<Cost> dist(n,dist_inf); dist[s] = 0; std::queue<int> que; que.push(s); while (!que.empty()){ int v = que.front(); que.pop(); for (auto [u, c] : g[v]){ if (chmin(dist[u],dist[v]+c)){ que.push(u); } } } return dist; } std::vector<Cost> bellman_ford(int s, bool &ng_cycle){ g.build(); std::vector<Cost> dist(n,dist_inf); std::vector<int> ng; dist[s] = 0; int tm = 0; while (tm < n){ bool finish = true; for (int v = 0; v < n; v++){ if (dist[v] == dist_inf) continue; for (auto [u, c] : g[v]){ if (chmin(dist[u],dist[v]+c)){ finish = false; if (tm == n-1) ng.emplace_back(u); } } } if (finish) break; tm++; } ng_cycle = (tm == n); if (ng_cycle){ for (auto v : ng) dist[v] = -dist_inf; tm = n; while (tm--){ for (int v = 0; v < n; v++){ if (dist[v] != -dist_inf) continue; for (auto [u, c] : g[v]){ dist[u] = -dist_inf; } } } } return dist; } std::vector<std::vector<Cost>> warshall_floyd(){ g.build(); std::vector<std::vector<Cost>> dist(n,std::vector<Cost>(n,dist_inf)); for (int v = 0; v < n; v++){ dist[v][v] = 0; for (auto [u, c] : g[v]){ chmin(dist[v][u],c); } } for (int k = 0; k < n; k++){ for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ chmin(dist[i][j],dist[i][k]+dist[k][j]); } } } return dist; } const auto operator[](int idx) const { return g[idx]; } auto operator[](int idx) { return g[idx]; } }; template<> struct graph<unweighted> { int n; internal::csr<int> g; int dist_inf = std::numeric_limits<int>::max() / 2; graph (int _n = 0) : n(_n), g(_n) {} graph (int _n, int _m) : n(_n), g(_n,_m) {} // 有向辺を追加 (無向辺ではないことに注意!) int add_edge(int u, int v){ int id = g.add(u, v); return id; } template<bool directed> static graph input(int _n, int _m, int indexed = 1){ if constexpr (directed){ graph g(_n, _m*2); for (int i = 0; i < _m; i++){ int u, v; std::cin >> u >> v; u -= indexed, v -= indexed; g.add_edge(u, v); g.add_edge(v, u); } g.build(); return g; } else { graph g(_n, _m); for (int i = 0; i < _m; i++){ int u, v; std::cin >> u >> v; u -= indexed, v -= indexed; g.add_edge(u, v); } g.build(); return g; } } void build(){ g.build(); } void set_inf(int new_inf){ dist_inf = new_inf; } std::vector<int> reconstruct(int s, int t, const std::vector<int> &dist){ if (dist[t] == dist_inf) return {}; g.build(); std::vector<int> from(n,-1); std::queue<int> que; que.push(s); while (!que.empty()){ int v = que.front(); que.pop(); for (auto u : g[v]){ if (from[u] == -1 && dist[u] == dist[v] + 1){ from[u] = v; que.push(u); } } } std::vector<int> ans = {t}; while (t != s){ t = from[t]; ans.emplace_back(t); } std::reverse(ans.begin(),ans.end()); return ans; } std::vector<int> bfs(int s){ g.build(); std::vector<int> dist(n,dist_inf); dist[s] = 0; std::queue<int> que; que.push(s); while (!que.empty()){ int v = que.front(); que.pop(); for (auto u : g[v]){ if (chmin(dist[u],dist[v]+1)){ que.push(u); } } } return dist; } const auto operator[](int idx) const { return g[idx]; } auto operator[](int idx) { return g[idx]; } }; template<> struct graph<bool> { int n; internal::csr<std::pair<int,bool>> g; int dist_inf = std::numeric_limits<int>::max() / 2; graph (int _n = 0) : n(_n), g(_n) {} graph (int _n, int _m) : n(_n), g(_n,_m) {} // 有向辺を追加 (無向辺ではないことに注意!) int add_edge(int u, int v, bool cost){ int id = g.add(u, {v, cost}); return id; } void build(){ g.build(); } void set_inf(int new_inf){ dist_inf = new_inf; } std::vector<int> reconstruct(int s, int t, const std::vector<int> &dist){ if (dist[t] == dist_inf) return {}; g.build(); std::vector<int> from(n,-1); std::queue<int> que; que.push(s); while (!que.empty()){ int v = que.front(); que.pop(); for (auto [u, b] : g[v]){ int c = (int)b; if (from[u] == -1 && dist[u] == dist[v] + c){ from[u] = v; que.push(u); } } } std::vector<int> ans = {t}; while (t != s){ t = from[t]; ans.emplace_back(t); } std::reverse(ans.begin(),ans.end()); return ans; } std::vector<int> bfs01(int s){ g.build(); std::vector<int> dist(n,dist_inf); dist[s] = 0; std::deque<int> que; que.push_back(s); while (!que.empty()){ int v = que.front(); que.pop_front(); for (auto [u, b] : g[v]){ int c = (int)b; if (chmin(dist[u],dist[v]+c)){ if (c == 0) que.push_front(u); else que.push_back(u); } } } return dist; } const auto operator[](int idx) const { return g[idx]; } auto operator[](int idx) { return g[idx]; } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/math/matrix.hpp" #line 8 "/Users/noya2/Desktop/Noya2_library/math/matrix.hpp" namespace noya2 { template<typename T, size_t hw = -1uz> struct matrix { static constexpr int h = hw, w = hw; std::array<T, hw*hw> m; matrix () : m({}) {} matrix (const std::array<T, hw*hw> &_m) : m(_m) {} matrix (const std::array<std::array<T, hw>, hw> &_m){ for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } matrix (const std::vector<std::vector<T>> &_m){ for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } auto operator[](int i) const { return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } auto operator[](int i){ return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } matrix &operator+= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] += r.m[idx(i,j)]; } } return *this; } matrix &operator-= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] -= r.m[idx(i,j)]; } } return *this; } matrix &operator*= (const matrix &r){ matrix ret; for (int i = 0; i < h; i++){ for (int k = 0; k < w; k++){ for (int j = 0; j < r.w; j++){ ret.m[idx(i,j)] += m[idx(i,k)] * r.m[idx(k,j)]; } } } return *this = ret; } matrix operator+ (const matrix &r) const { return matrix(*this) += r; } matrix operator- (const matrix &r) const { return matrix(*this) -= r; } matrix operator* (const matrix &r) const { return matrix(*this) *= r; } matrix& operator*=(const T &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] *= r; } } return *this; } friend matrix operator* (const T &r, const matrix &mat){ return matrix(mat) *= r; } friend matrix operator* (const matrix &mat, const T &r){ return matrix(mat) *= r; } matrix pow(long long n){ if (n == 0) return e(); matrix f = pow(n / 2); matrix ret = f * f; if (n & 1) ret *= (*this); return ret; } int idx(int i, int j){ return i * w + j; } static matrix e(){ matrix ret; for (int i = 0; i < h; i++){ ret[i][i] = T(1); } return ret; } friend std::ostream &operator<<(std::ostream &os, const matrix &mat){ for (int i = 0; i < mat.h; i++){ if (i != 0) os << '\n'; for (int j = 0; j < mat.w; j++){ if (j != 0) os << ' '; os << mat[i][j]; } } return os; } friend std::istream &operator>>(std::istream &is, matrix &mat){ for (int i = 0; i < mat.h; i++){ for (int j = 0; j < mat.w; j++){ is >> mat[i][j]; } } return is; } }; template<typename T> struct matrix<T,-1uz> { int h, w; std::vector<T> m; matrix () {} matrix (int _h) : matrix(_h,_h) {} matrix (int _h, int _w) : h(_h), w(_w), m(_h*_w) {} matrix (int _h, int _w, const std::vector<T> &_m) : h(_h), w(_w), m(_m) { assert((int)_m.size() == _h*_w); } matrix (const std::vector<std::vector<T>> &_m){ h = _m.size(); assert(h >= 1); w = _m[0].size(); for (int i = 0; i < h; i++) for (int j = 0; j < w; j++){ m[idx(i,j)] = _m[i][j]; } } auto operator[](int i) const { return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } auto operator[](int i){ return std::ranges::subrange(m.begin()+i*w,m.begin()+(i+1)*w); } matrix &operator+= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] += r.m[idx(i,j)]; } } return *this; } matrix &operator-= (const matrix &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] -= r.m[idx(i,j)]; } } return *this; } matrix &operator*= (const matrix &r){ matrix ret(h, r.w); for (int i = 0; i < h; i++){ for (int k = 0; k < w; k++){ for (int j = 0; j < r.w; j++){ ret.m[idx(i,j)] += m[idx(i,k)] * r.m[idx(k,j)]; } } } return *this = ret; } matrix operator+ (const matrix &r) const { return matrix(*this) += r; } matrix operator- (const matrix &r) const { return matrix(*this) -= r; } matrix operator* (const matrix &r) const { return matrix(*this) *= r; } matrix& operator*=(const T &r){ for (int i = 0; i < h; ++i){ for (int j = 0; j < w; ++j){ m[idx(i,j)] *= r; } } return *this; } friend matrix operator* (const T &r, const matrix &mat){ return matrix(mat) *= r; } friend matrix operator* (const matrix &mat, const T &r){ return matrix(mat) *= r; } matrix pow(long long n){ if (n == 0) return e(h); matrix f = pow(n / 2); matrix ret = f * f; if (n & 1) ret *= (*this); return ret; } int idx(int i, int j){ return i * w + j; } static matrix e(int _h){ auto ret = matrix(_h, _h); for (int i = 0; i < _h; i++){ ret[i][i] = T(1); } return ret; } friend std::ostream &operator<<(std::ostream &os, const matrix &mat){ for (int i = 0; i < mat.h; i++){ if (i != 0) os << '\n'; for (int j = 0; j < mat.w; j++){ if (j != 0) os << ' '; os << mat[i][j]; } } return os; } friend std::istream &operator>>(std::istream &is, matrix &mat){ for (int i = 0; i < mat.h; i++){ for (int j = 0; j < mat.w; j++){ is >> mat[i][j]; } } return is; } }; template<typename T, size_t _hw = -1uz> T determinant(matrix<T, _hw> mat){ int hw = mat.h; T ret = 1; for (int i = 0; i < hw; i++) { int idx = -1; for (int j = i; j < hw; j++) { if (mat[j][i] != 0) { idx = j; break; } } if (idx == -1) return 0; if (i != idx) { ret *= T(-1); for (int j = 0; j < hw; j++){ std::swap(mat[i][j],mat[idx][j]); } } ret *= mat[i][i]; T inv = T(1) / mat[i][i]; for (int j = 0; j < hw; j++) { mat[i][j] *= inv; } for (int j = i + 1; j < hw; j++) { T a = mat[j][i]; if (a == 0) continue; for (int k = i; k < hw; k++) { mat[j][k] -= mat[i][k] * a; } } } return ret; } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" namespace noya2 { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m); constexpr long long primitive_root_constexpr(long long m){ if (m == (1LL << 47) - (1LL << 24) + 1) return 3; return primitive_root_constexpr(static_cast<int>(m)); } } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" namespace noya2{ struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64); unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; template <int m> struct static_modint { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<std::signed_integral T> constexpr static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> constexpr static_modint(T v){ _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = is_prime_flag<m>; }; template <int id> struct dynamic_modint { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template<std::signed_integral T> dynamic_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> dynamic_modint(T v){ _v = (unsigned int)(v % umod()); } uint val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = noya2::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> noya2::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template<typename T> concept Modint = requires (T &a){ T::mod(); a.inv(); a.val(); a.pow(declval<int>()); }; } // namespace noya2 #line 6 "c.cpp" using mint = modint998244353; void solve(){ int n, m, x; in(n,m,x); graph<unweighted> g(n); rep(t,m){ int u, v; in(u,v); u--, v--; g.add_edge(u,v); if (u == v) continue; g.add_edge(v,u); } g.build(); matrix<mint> mat(n*n+n,n*n+n); auto idx = [&](int i, int j){ return i * n + j; }; vector<vector<bool>> done(n,vector<bool>(n,false)); rep(i,n){ for (int j : g[i]){ if (done[i][j]) continue; if (g[j].size() == 1u){ mat[idx(i,j)][idx(n,j)] += 1; done[i][j] = true; continue; } mint jsz = mint(g[j].size()-1u).inv(); mint sum = 0; for (int k : g[j]){ mat[idx(i,j)][idx(j,k)] += jsz; sum += jsz; } mat[idx(i,j)][idx(j,i)] -= jsz; sum -= jsz; done[i][j] = true; } } rep(j,n){ if (g[j].empty()) continue; mint jsz = mint(g[j].size()).inv(); for (int k : g[j]){ mat[idx(n,j)][idx(j,k)] += jsz; } } matrix<mint> ini(1,n*n+n); ini[0][idx(n,0)] = 1; ini *= mat.pow(x); rep(j,n){ mint ans = 0; rep(i,n+1){ ans += ini[0][idx(i,j)]; } out(ans); } } int main(){ int t = 1; //in(t); while (t--) { solve(); } }