結果
問題 |
No.2832 Nana's Fickle Adventure
|
ユーザー |
👑 |
提出日時 | 2024-08-03 01:43:51 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 117 ms / 3,000 ms |
コード長 | 4,790 bytes |
コンパイル時間 | 4,126 ms |
コンパイル使用メモリ | 259,368 KB |
最終ジャッジ日時 | 2025-02-23 20:42:48 |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 48 |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> #define rep(i,n) for(int i=0;i<n;i++) using namespace std; using namespace atcoder; typedef long long ll; typedef vector<int> vi; typedef vector<long long> vl; typedef vector<vector<int>> vvi; typedef vector<vector<long long>> vvl; typedef long double ld; typedef pair<int, int> P; ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;} template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;} template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;} template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;} template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;} template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return os;} template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : ""); return os;} template<typename T> ostream& operator<<(ostream& os, const set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;} template<typename T> ostream& operator<<(ostream& os, const unordered_set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;} template<typename S, auto op, auto e> ostream& operator<<(ostream& os, const atcoder::segtree<S, op, e>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;} template<typename S, auto op, auto e, typename F, auto mapping, auto composition, auto id> ostream& operator<<(ostream& os, const atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;} template<typename T> void chmin(T& a, T b){a = min(a, b);} template<typename T> void chmax(T& a, T b){a = max(a, b);} using mint = modint998244353; // https://youtu.be/ylWYSurx10A?t=2352 template<typename T> struct Matrix : vector<vector<T>> { int h, w; Matrix(int h, int w, T val=0): vector<vector<T>>(h, vector<T>(w, val)), h(h), w(w) {} Matrix(initializer_list<initializer_list<T>> a) : vector<vector<T>>(a.begin(), a.end()){ assert(int(this->size()) >= 1); assert(int((*this)[0].size()) >= 1); h = this->size(); w = (*this)[0].size(); rep(i, h) assert(int((*this)[i].size()) == w); } Matrix& unit() { assert(h == w); rep(i,h) (*this)[i][i] = 1; return *this; } Matrix operator*=(const Matrix& M){ assert(w == M.h); Matrix r(h, M.w); rep(i,h) rep(k,w) rep(j, M.w){ r[i][j] += (*this)[i][k] * M[k][j]; } swap(*this, r); return *this; } Matrix operator*(const Matrix& M) const {return (Matrix(*this) *= M);} Matrix operator*=(const T& a) { for(int i = 0; i < h; i++) for(int j = 0; j < w; j++) (*this)[i][j] *= a; return *this; } Matrix operator*(const T& a) const {return (Matrix(*this) *= a);} Matrix operator+=(const Matrix& M){ assert(h == M.h and w == M.w); for(int i = 0; i < h; i++) for(int j = 0; j < w; j++) (*this)[i][j] += M[i][j]; return *this; } Matrix operator+(const Matrix& M) const {return (Matrix(*this) += M);} Matrix pow(long long t) const { assert(h == w); if (!t) return Matrix(h,h).unit(); if (t == 1) return *this; Matrix r = pow(t>>1);r = r*r; if (t&1) r = r*(*this); return r; } }; int main(){ int n, m, t; cin >> n >> m >> t; vector<vector<int>> path(n, vector<int>(n)); vector<int> path_tot(n); auto f = [&](int u, int v){ return u * n + v; }; rep(i, m){ int u, v; cin >> u >> v; u--; v--; if(u != v){ path[u][v]++; path[v][u]++; path_tot[u]++; path_tot[v]++; }else{ path[u][u]++; path_tot[u]++; } } int k = (n + 1) * n; Matrix<mint> mat(k, k); rep(prev, n + 1) rep(from, n){ if(path_tot[from] == 0){ mat[f(n, from)][f(prev, from)] = 1; continue; } if(path_tot[from] == 1 and prev != n){ mat[f(n, from)][f(prev, from)] = 1; continue; } rep(to, n){ mint prob = 1; if(path[from][to] == 0) continue; if(prev == n){ prob *= path[from][to]; prob /= path_tot[from]; }else if(prev != n and prev == to){ prob *= path[from][to] - 1; prob /= path_tot[from] - 1; }else if(prev != n and prev != to){ prob *= path[from][to]; prob /= path_tot[from] - 1; } mat[f(from, to)][f(prev, from)] += prob; } } auto mat_pow = mat.pow(t); vector<mint> ans(n); rep(from, n + 1) rep(to, n){ ans[to] += mat_pow[f(from, to)][f(n, 0)]; } rep(to, n){ cout << ans[to] << "\n"; } return 0; }