結果
問題 | No.2747 Permutation Adjacent Sum |
ユーザー |
![]() |
提出日時 | 2024-08-03 17:33:03 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 255 ms / 3,000 ms |
コード長 | 61,128 bytes |
コンパイル時間 | 8,424 ms |
コンパイル使用メモリ | 343,916 KB |
実行使用メモリ | 26,808 KB |
最終ジャッジ日時 | 2024-08-03 17:33:18 |
合計ジャッジ時間 | 14,685 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 40 |
ソースコード
#line 1 "main.cpp"#define PROBLEM "https://yukicoder.me/problems/no/2747"#line 1 "/home/maspy/compro/library/my_template.hpp"#if defined(LOCAL)#include <my_template_compiled.hpp>#else// https://codeforces.com/blog/entry/96344#pragma GCC optimize("Ofast,unroll-loops")// いまの CF だとこれ入れると動かない?// #pragma GCC target("avx2,popcnt")#include <bits/stdc++.h>using namespace std;using ll = long long;using u32 = unsigned int;using u64 = unsigned long long;using i128 = __int128;using u128 = unsigned __int128;using f128 = __float128;template <class T>constexpr T infty = 0;template <>constexpr int infty<int> = 1'010'000'000;template <>constexpr ll infty<ll> = 2'020'000'000'000'000'000;template <>constexpr u32 infty<u32> = infty<int>;template <>constexpr u64 infty<u64> = infty<ll>;template <>constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;template <>constexpr double infty<double> = infty<ll>;template <>constexpr long double infty<long double> = infty<ll>;using pi = pair<ll, ll>;using vi = vector<ll>;template <class T>using vc = vector<T>;template <class T>using vvc = vector<vc<T>>;template <class T>using vvvc = vector<vvc<T>>;template <class T>using vvvvc = vector<vvvc<T>>;template <class T>using vvvvvc = vector<vvvvc<T>>;template <class T>using pq = priority_queue<T>;template <class T>using pqg = priority_queue<T, vector<T>, greater<T>>;#define vv(type, name, h, ...) \vector<vector<type>> name(h, vector<type>(__VA_ARGS__))#define vvv(type, name, h, w, ...) \vector<vector<vector<type>>> name( \h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))#define vvvv(type, name, a, b, c, ...) \vector<vector<vector<vector<type>>>> name( \a, vector<vector<vector<type>>>( \b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))// https://trap.jp/post/1224/#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)#define overload4(a, b, c, d, e, ...) e#define overload3(a, b, c, d, ...) d#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)#define FOR_subset(t, s) \for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))#define all(x) x.begin(), x.end()#define len(x) ll(x.size())#define elif else if#define eb emplace_back#define mp make_pair#define mt make_tuple#define fi first#define se second#define stoi stollint popcnt(int x) { return __builtin_popcount(x); }int popcnt(u32 x) { return __builtin_popcount(x); }int popcnt(ll x) { return __builtin_popcountll(x); }int popcnt(u64 x) { return __builtin_popcountll(x); }int popcnt_mod_2(int x) { return __builtin_parity(x); }int popcnt_mod_2(u32 x) { return __builtin_parity(x); }int popcnt_mod_2(ll x) { return __builtin_parityll(x); }int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }template <typename T>T floor(T a, T b) {return a / b - (a % b && (a ^ b) < 0);}template <typename T>T ceil(T x, T y) {return floor(x + y - 1, y);}template <typename T>T bmod(T x, T y) {return x - y * floor(x, y);}template <typename T>pair<T, T> divmod(T x, T y) {T q = floor(x, y);return {q, x - q * y};}template <typename T, typename U>T SUM(const vector<U> &A) {T sm = 0;for (auto &&a: A) sm += a;return sm;}#define MIN(v) *min_element(all(v))#define MAX(v) *max_element(all(v))#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))#define UNIQUE(x) \sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()template <typename T>T POP(deque<T> &que) {T a = que.front();que.pop_front();return a;}template <typename T>T POP(pq<T> &que) {T a = que.top();que.pop();return a;}template <typename T>T POP(pqg<T> &que) {T a = que.top();que.pop();return a;}template <typename T>T POP(vc<T> &que) {T a = que.back();que.pop_back();return a;}template <typename F>ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {if (check_ok) assert(check(ok));while (abs(ok - ng) > 1) {auto x = (ng + ok) / 2;(check(x) ? ok : ng) = x;}return ok;}template <typename F>double binary_search_real(F check, double ok, double ng, int iter = 100) {FOR(iter) {double x = (ok + ng) / 2;(check(x) ? ok : ng) = x;}return (ok + ng) / 2;}template <class T, class S>inline bool chmax(T &a, const S &b) {return (a < b ? a = b, 1 : 0);}template <class T, class S>inline bool chmin(T &a, const S &b) {return (a > b ? a = b, 1 : 0);}// ? は -1vc<int> s_to_vi(const string &S, char first_char) {vc<int> A(S.size());FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }return A;}template <typename T, typename U>vector<T> cumsum(vector<U> &A, int off = 1) {int N = A.size();vector<T> B(N + 1);FOR(i, N) { B[i + 1] = B[i] + A[i]; }if (off == 0) B.erase(B.begin());return B;}// stable sorttemplate <typename T>vector<int> argsort(const vector<T> &A) {vector<int> ids(len(A));iota(all(ids), 0);sort(all(ids),[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });return ids;}// A[I[0]], A[I[1]], ...template <typename T>vc<T> rearrange(const vc<T> &A, const vc<int> &I) {vc<T> B(len(I));FOR(i, len(I)) B[i] = A[I[i]];return B;}template <typename T, typename... Vectors>vc<T> concat(vc<T> &first, const Vectors &... others) {vc<T> res = first;(res.insert(res.end(), others.begin(), others.end()), ...);return res;}#endif#line 1 "/home/maspy/compro/library/other/io.hpp"#define FASTIO#include <unistd.h>// https://judge.yosupo.jp/submission/21623namespace fastio {static constexpr uint32_t SZ = 1 << 17;char ibuf[SZ];char obuf[SZ];char out[100];// pointer of ibuf, obufuint32_t pil = 0, pir = 0, por = 0;struct Pre {char num[10000][4];constexpr Pre() : num() {for (int i = 0; i < 10000; i++) {int n = i;for (int j = 3; j >= 0; j--) {num[i][j] = n % 10 | '0';n /= 10;}}}} constexpr pre;inline void load() {memcpy(ibuf, ibuf + pil, pir - pil);pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);pil = 0;if (pir < SZ) ibuf[pir++] = '\n';}inline void flush() {fwrite(obuf, 1, por, stdout);por = 0;}void rd(char &c) {do {if (pil + 1 > pir) load();c = ibuf[pil++];} while (isspace(c));}void rd(string &x) {x.clear();char c;do {if (pil + 1 > pir) load();c = ibuf[pil++];} while (isspace(c));do {x += c;if (pil == pir) load();c = ibuf[pil++];} while (!isspace(c));}template <typename T>void rd_real(T &x) {string s;rd(s);x = stod(s);}template <typename T>void rd_integer(T &x) {if (pil + 100 > pir) load();char c;doc = ibuf[pil++];while (c < '-');bool minus = 0;if constexpr (is_signed<T>::value || is_same_v<T, i128>) {if (c == '-') { minus = 1, c = ibuf[pil++]; }}x = 0;while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }if constexpr (is_signed<T>::value || is_same_v<T, i128>) {if (minus) x = -x;}}void rd(int &x) { rd_integer(x); }void rd(ll &x) { rd_integer(x); }void rd(i128 &x) { rd_integer(x); }void rd(u32 &x) { rd_integer(x); }void rd(u64 &x) { rd_integer(x); }void rd(u128 &x) { rd_integer(x); }void rd(double &x) { rd_real(x); }void rd(long double &x) { rd_real(x); }void rd(f128 &x) { rd_real(x); }template <class T, class U>void rd(pair<T, U> &p) {return rd(p.first), rd(p.second);}template <size_t N = 0, typename T>void rd_tuple(T &t) {if constexpr (N < std::tuple_size<T>::value) {auto &x = std::get<N>(t);rd(x);rd_tuple<N + 1>(t);}}template <class... T>void rd(tuple<T...> &tpl) {rd_tuple(tpl);}template <size_t N = 0, typename T>void rd(array<T, N> &x) {for (auto &d: x) rd(d);}template <class T>void rd(vc<T> &x) {for (auto &d: x) rd(d);}void read() {}template <class H, class... T>void read(H &h, T &... t) {rd(h), read(t...);}void wt(const char c) {if (por == SZ) flush();obuf[por++] = c;}void wt(const string s) {for (char c: s) wt(c);}void wt(const char *s) {size_t len = strlen(s);for (size_t i = 0; i < len; i++) wt(s[i]);}template <typename T>void wt_integer(T x) {if (por > SZ - 100) flush();if (x < 0) { obuf[por++] = '-', x = -x; }int outi;for (outi = 96; x >= 10000; outi -= 4) {memcpy(out + outi, pre.num[x % 10000], 4);x /= 10000;}if (x >= 1000) {memcpy(obuf + por, pre.num[x], 4);por += 4;} else if (x >= 100) {memcpy(obuf + por, pre.num[x] + 1, 3);por += 3;} else if (x >= 10) {int q = (x * 103) >> 10;obuf[por] = q | '0';obuf[por + 1] = (x - q * 10) | '0';por += 2;} elseobuf[por++] = x | '0';memcpy(obuf + por, out + outi + 4, 96 - outi);por += 96 - outi;}template <typename T>void wt_real(T x) {ostringstream oss;oss << fixed << setprecision(15) << double(x);string s = oss.str();wt(s);}void wt(int x) { wt_integer(x); }void wt(ll x) { wt_integer(x); }void wt(i128 x) { wt_integer(x); }void wt(u32 x) { wt_integer(x); }void wt(u64 x) { wt_integer(x); }void wt(u128 x) { wt_integer(x); }void wt(double x) { wt_real(x); }void wt(long double x) { wt_real(x); }void wt(f128 x) { wt_real(x); }template <class T, class U>void wt(const pair<T, U> val) {wt(val.first);wt(' ');wt(val.second);}template <size_t N = 0, typename T>void wt_tuple(const T t) {if constexpr (N < std::tuple_size<T>::value) {if constexpr (N > 0) { wt(' '); }const auto x = std::get<N>(t);wt(x);wt_tuple<N + 1>(t);}}template <class... T>void wt(tuple<T...> tpl) {wt_tuple(tpl);}template <class T, size_t S>void wt(const array<T, S> val) {auto n = val.size();for (size_t i = 0; i < n; i++) {if (i) wt(' ');wt(val[i]);}}template <class T>void wt(const vector<T> val) {auto n = val.size();for (size_t i = 0; i < n; i++) {if (i) wt(' ');wt(val[i]);}}void print() { wt('\n'); }template <class Head, class... Tail>void print(Head &&head, Tail &&... tail) {wt(head);if (sizeof...(Tail)) wt(' ');print(forward<Tail>(tail)...);}// gcc expansion. called automaticall after main.void __attribute__((destructor)) _d() { flush(); }} // namespace fastiousing fastio::read;using fastio::print;using fastio::flush;#if defined(LOCAL)#define SHOW(...) \SHOW_IMPL(__VA_ARGS__, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)#define SHOW_IMPL(_1, _2, _3, _4, NAME, ...) NAME#define SHOW1(x) print(#x, "=", (x)), flush()#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()#define SHOW4(x, y, z, w) \print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()#else#define SHOW(...)#endif#define INT(...) \int __VA_ARGS__; \read(__VA_ARGS__)#define LL(...) \ll __VA_ARGS__; \read(__VA_ARGS__)#define U32(...) \u32 __VA_ARGS__; \read(__VA_ARGS__)#define U64(...) \u64 __VA_ARGS__; \read(__VA_ARGS__)#define STR(...) \string __VA_ARGS__; \read(__VA_ARGS__)#define CHAR(...) \char __VA_ARGS__; \read(__VA_ARGS__)#define DBL(...) \double __VA_ARGS__; \read(__VA_ARGS__)#define VEC(type, name, size) \vector<type> name(size); \read(name)#define VV(type, name, h, w) \vector<vector<type>> name(h, vector<type>(w)); \read(name)void YES(bool t = 1) { print(t ? "YES" : "NO"); }void NO(bool t = 1) { YES(!t); }void Yes(bool t = 1) { print(t ? "Yes" : "No"); }void No(bool t = 1) { Yes(!t); }void yes(bool t = 1) { print(t ? "yes" : "no"); }void no(bool t = 1) { yes(!t); }#line 5 "main.cpp"#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"struct has_mod_impl {template <class T>static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});template <class T>static auto check(...) -> std::false_type;};template <class T>class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};template <typename mint>mint inv(int n) {static const int mod = mint::get_mod();static vector<mint> dat = {0, 1};assert(0 <= n);if (n >= mod) n %= mod;while (len(dat) <= n) {int k = len(dat);int q = (mod + k - 1) / k;dat.eb(dat[k * q - mod] * mint::raw(q));}return dat[n];}template <typename mint>mint fact(int n) {static const int mod = mint::get_mod();assert(0 <= n && n < mod);static vector<mint> dat = {1, 1};while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));return dat[n];}template <typename mint>mint fact_inv(int n) {static vector<mint> dat = {1, 1};if (n < 0) return mint(0);while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));return dat[n];}template <class mint, class... Ts>mint fact_invs(Ts... xs) {return (mint(1) * ... * fact_inv<mint>(xs));}template <typename mint, class Head, class... Tail>mint multinomial(Head &&head, Tail &&... tail) {return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);}template <typename mint>mint C_dense(int n, int k) {static vvc<mint> C;static int H = 0, W = 0;auto calc = [&](int i, int j) -> mint {if (i == 0) return (j == 0 ? mint(1) : mint(0));return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);};if (W <= k) {FOR(i, H) {C[i].resize(k + 1);FOR(j, W, k + 1) { C[i][j] = calc(i, j); }}W = k + 1;}if (H <= n) {C.resize(n + 1);FOR(i, H, n + 1) {C[i].resize(W);FOR(j, W) { C[i][j] = calc(i, j); }}H = n + 1;}return C[n][k];}template <typename mint, bool large = false, bool dense = false>mint C(ll n, ll k) {assert(n >= 0);if (k < 0 || n < k) return 0;if constexpr (dense) return C_dense<mint>(n, k);if constexpr (!large) return multinomial<mint>(n, k, n - k);k = min(k, n - k);mint x(1);FOR(i, k) x *= mint(n - i);return x * fact_inv<mint>(k);}template <typename mint, bool large = false>mint C_inv(ll n, ll k) {assert(n >= 0);assert(0 <= k && k <= n);if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);return mint(1) / C<mint, 1>(n, k);}// [x^d](1-x)^{-n}template <typename mint, bool large = false, bool dense = false>mint C_negative(ll n, ll d) {assert(n >= 0);if (d < 0) return mint(0);if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }return C<mint, large, dense>(n + d - 1, d);}#line 3 "/home/maspy/compro/library/mod/modint.hpp"template <int mod>struct modint {static constexpr u32 umod = u32(mod);static_assert(umod < u32(1) << 31);u32 val;static modint raw(u32 v) {modint x;x.val = v;return x;}constexpr modint() : val(0) {}constexpr modint(u32 x) : val(x % umod) {}constexpr modint(u64 x) : val(x % umod) {}constexpr modint(u128 x) : val(x % umod) {}constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};bool operator<(const modint &other) const { return val < other.val; }modint &operator+=(const modint &p) {if ((val += p.val) >= umod) val -= umod;return *this;}modint &operator-=(const modint &p) {if ((val += umod - p.val) >= umod) val -= umod;return *this;}modint &operator*=(const modint &p) {val = u64(val) * p.val % umod;return *this;}modint &operator/=(const modint &p) {*this *= p.inverse();return *this;}modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }modint operator+(const modint &p) const { return modint(*this) += p; }modint operator-(const modint &p) const { return modint(*this) -= p; }modint operator*(const modint &p) const { return modint(*this) *= p; }modint operator/(const modint &p) const { return modint(*this) /= p; }bool operator==(const modint &p) const { return val == p.val; }bool operator!=(const modint &p) const { return val != p.val; }modint inverse() const {int a = val, b = mod, u = 1, v = 0, t;while (b > 0) {t = a / b;swap(a -= t * b, b), swap(u -= t * v, v);}return modint(u);}modint pow(ll n) const {assert(n >= 0);modint ret(1), mul(val);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}static constexpr int get_mod() { return mod; }// (n, r), r は 1 の 2^n 乗根static constexpr pair<int, int> ntt_info() {if (mod == 120586241) return {20, 74066978};if (mod == 167772161) return {25, 17};if (mod == 469762049) return {26, 30};if (mod == 754974721) return {24, 362};if (mod == 880803841) return {23, 211};if (mod == 943718401) return {22, 663003469};if (mod == 998244353) return {23, 31};if (mod == 1004535809) return {21, 836905998};if (mod == 1045430273) return {20, 363};if (mod == 1051721729) return {20, 330};if (mod == 1053818881) return {20, 2789};return {-1, -1};}static constexpr bool can_ntt() { return ntt_info().fi != -1; }};#ifdef FASTIOtemplate <int mod>void rd(modint<mod> &x) {fastio::rd(x.val);x.val %= mod;// assert(0 <= x.val && x.val < mod);}template <int mod>void wt(modint<mod> x) {fastio::wt(x.val);}#endifusing modint107 = modint<1000000007>;using modint998 = modint<998244353>;#line 2 "/home/maspy/compro/library/poly/convolution_all.hpp"#line 2 "/home/maspy/compro/library/mod/mod_inv.hpp"// long でも大丈夫// (val * x - 1) が mod の倍数になるようにする// 特に mod=0 なら x=0 が満たすll mod_inv(ll val, ll mod) {if (mod == 0) return 0;mod = abs(mod);val %= mod;if (val < 0) val += mod;ll a = val, b = mod, u = 1, v = 0, t;while (b > 0) {t = a / b;swap(a -= t * b, b), swap(u -= t * v, v);}if (u < 0) u += mod;return u;}#line 2 "/home/maspy/compro/library/mod/crt3.hpp"constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {a %= mod;u64 res = 1;FOR(32) {if (n & 1) res = res * a % mod;a = a * a % mod, n /= 2;}return res;}template <typename T, u32 p0, u32 p1>T CRT2(u64 a0, u64 a1) {static_assert(p0 < p1);static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);u64 c = (a1 - a0 + p1) * x0_1 % p1;return a0 + c * p0;}template <typename T, u32 p0, u32 p1, u32 p2>T CRT3(u64 a0, u64 a1, u64 a2) {static_assert(p0 < p1 && p1 < p2);static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);static constexpr u64 p01 = u64(p0) * p1;u64 c = (a1 - a0 + p1) * x1 % p1;u64 ans_1 = a0 + c * p0;c = (a2 - ans_1 % p2 + p2) * x2 % p2;return T(ans_1) + T(c) * T(p01);}template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4>T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) {static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4);static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);static constexpr u64 x3= mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);static constexpr u64 x4= mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);static constexpr u64 p01 = u64(p0) * p1;static constexpr u64 p23 = u64(p2) * p3;u64 c = (a1 - a0 + p1) * x1 % p1;u64 ans_1 = a0 + c * p0;c = (a2 - ans_1 % p2 + p2) * x2 % p2;u128 ans_2 = ans_1 + c * static_cast<u128>(p01);c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3;u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4;return T(ans_3) + T(c) * T(p01) * T(p23);}#line 2 "/home/maspy/compro/library/poly/convolution_naive.hpp"template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {int n = int(a.size()), m = int(b.size());if (n > m) return convolution_naive<T>(b, a);if (n == 0) return {};vector<T> ans(n + m - 1);FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];return ans;}template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {int n = int(a.size()), m = int(b.size());if (n > m) return convolution_naive<T>(b, a);if (n == 0) return {};vc<T> ans(n + m - 1);if (n <= 16 && (T::get_mod() < (1 << 30))) {for (int k = 0; k < n + m - 1; ++k) {int s = max(0, k - m + 1);int t = min(n, k + 1);u64 sm = 0;for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }ans[k] = sm;}} else {for (int k = 0; k < n + m - 1; ++k) {int s = max(0, k - m + 1);int t = min(n, k + 1);u128 sm = 0;for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }ans[k] = T::raw(sm % T::get_mod());}}return ans;}#line 2 "/home/maspy/compro/library/poly/convolution_karatsuba.hpp"// 任意の環でできるtemplate <typename T>vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {const int thresh = 30;if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);int n = max(len(f), len(g));int m = ceil(n, 2);vc<T> f1, f2, g1, g2;if (len(f) < m) f1 = f;if (len(f) >= m) f1 = {f.begin(), f.begin() + m};if (len(f) >= m) f2 = {f.begin() + m, f.end()};if (len(g) < m) g1 = g;if (len(g) >= m) g1 = {g.begin(), g.begin() + m};if (len(g) >= m) g2 = {g.begin() + m, g.end()};vc<T> a = convolution_karatsuba(f1, g1);vc<T> b = convolution_karatsuba(f2, g2);FOR(i, len(f2)) f1[i] += f2[i];FOR(i, len(g2)) g1[i] += g2[i];vc<T> c = convolution_karatsuba(f1, g1);vc<T> F(len(f) + len(g) - 1);assert(2 * m + len(b) <= len(F));FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];if (c.back() == T(0)) c.pop_back();FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];return F;}#line 2 "/home/maspy/compro/library/poly/ntt.hpp"template <class mint>void ntt(vector<mint>& a, bool inverse) {assert(mint::can_ntt());const int rank2 = mint::ntt_info().fi;const int mod = mint::get_mod();static array<mint, 30> root, iroot;static array<mint, 30> rate2, irate2;static array<mint, 30> rate3, irate3;assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));static bool prepared = 0;if (!prepared) {prepared = 1;root[rank2] = mint::ntt_info().se;iroot[rank2] = mint(1) / root[rank2];FOR_R(i, rank2) {root[i] = root[i + 1] * root[i + 1];iroot[i] = iroot[i + 1] * iroot[i + 1];}mint prod = 1, iprod = 1;for (int i = 0; i <= rank2 - 2; i++) {rate2[i] = root[i + 2] * prod;irate2[i] = iroot[i + 2] * iprod;prod *= iroot[i + 2];iprod *= root[i + 2];}prod = 1, iprod = 1;for (int i = 0; i <= rank2 - 3; i++) {rate3[i] = root[i + 3] * prod;irate3[i] = iroot[i + 3] * iprod;prod *= iroot[i + 3];iprod *= root[i + 3];}}int n = int(a.size());int h = topbit(n);assert(n == 1 << h);if (!inverse) {int len = 0;while (len < h) {if (h - len == 1) {int p = 1 << (h - len - 1);mint rot = 1;FOR(s, 1 << len) {int offset = s << (h - len);FOR(i, p) {auto l = a[i + offset];auto r = a[i + offset + p] * rot;a[i + offset] = l + r;a[i + offset + p] = l - r;}rot *= rate2[topbit(~s & -~s)];}len++;} else {int p = 1 << (h - len - 2);mint rot = 1, imag = root[2];for (int s = 0; s < (1 << len); s++) {mint rot2 = rot * rot;mint rot3 = rot2 * rot;int offset = s << (h - len);for (int i = 0; i < p; i++) {u64 mod2 = u64(mod) * mod;u64 a0 = a[i + offset].val;u64 a1 = u64(a[i + offset + p].val) * rot.val;u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;u64 na2 = mod2 - a2;a[i + offset] = a0 + a2 + a1 + a3;a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));a[i + offset + 2 * p] = a0 + na2 + a1na3imag;a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);}rot *= rate3[topbit(~s & -~s)];}len += 2;}}} else {mint coef = mint(1) / mint(len(a));FOR(i, len(a)) a[i] *= coef;int len = h;while (len) {if (len == 1) {int p = 1 << (h - len);mint irot = 1;FOR(s, 1 << (len - 1)) {int offset = s << (h - len + 1);FOR(i, p) {u64 l = a[i + offset].val;u64 r = a[i + offset + p].val;a[i + offset] = l + r;a[i + offset + p] = (mod + l - r) * irot.val;}irot *= irate2[topbit(~s & -~s)];}len--;} else {int p = 1 << (h - len);mint irot = 1, iimag = iroot[2];FOR(s, (1 << (len - 2))) {mint irot2 = irot * irot;mint irot3 = irot2 * irot;int offset = s << (h - len + 2);for (int i = 0; i < p; i++) {u64 a0 = a[i + offset + 0 * p].val;u64 a1 = a[i + offset + 1 * p].val;u64 a2 = a[i + offset + 2 * p].val;u64 a3 = a[i + offset + 3 * p].val;u64 x = (mod + a2 - a3) * iimag.val % mod;a[i + offset] = a0 + a1 + a2 + a3;a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;}irot *= irate3[topbit(~s & -~s)];}len -= 2;}}}}#line 1 "/home/maspy/compro/library/poly/fft.hpp"namespace CFFT {using real = double;struct C {real x, y;C() : x(0), y(0) {}C(real x, real y) : x(x), y(y) {}inline C operator+(const C& c) const { return C(x + c.x, y + c.y); }inline C operator-(const C& c) const { return C(x - c.x, y - c.y); }inline C operator*(const C& c) const {return C(x * c.x - y * c.y, x * c.y + y * c.x);}inline C conj() const { return C(x, -y); }};const real PI = acosl(-1);int base = 1;vector<C> rts = {{0, 0}, {1, 0}};vector<int> rev = {0, 1};void ensure_base(int nbase) {if (nbase <= base) return;rev.resize(1 << nbase);rts.resize(1 << nbase);for (int i = 0; i < (1 << nbase); i++) {rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));}while (base < nbase) {real angle = PI * 2.0 / (1 << (base + 1));for (int i = 1 << (base - 1); i < (1 << base); i++) {rts[i << 1] = rts[i];real angle_i = angle * (2 * i + 1 - (1 << base));rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));}++base;}}void fft(vector<C>& a, int n) {assert((n & (n - 1)) == 0);int zeros = __builtin_ctz(n);ensure_base(zeros);int shift = base - zeros;for (int i = 0; i < n; i++) {if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); }}for (int k = 1; k < n; k <<= 1) {for (int i = 0; i < n; i += 2 * k) {for (int j = 0; j < k; j++) {C z = a[i + j + k] * rts[j + k];a[i + j + k] = a[i + j] - z;a[i + j] = a[i + j] + z;}}}}} // namespace CFFT#line 9 "/home/maspy/compro/library/poly/convolution.hpp"template <class mint>vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {if (a.empty() || b.empty()) return {};int n = int(a.size()), m = int(b.size());int sz = 1;while (sz < n + m - 1) sz *= 2;// sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。if ((n + m - 3) <= sz / 2) {auto a_last = a.back(), b_last = b.back();a.pop_back(), b.pop_back();auto c = convolution(a, b);c.resize(n + m - 1);c[n + m - 2] = a_last * b_last;FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;return c;}a.resize(sz), b.resize(sz);bool same = a == b;ntt(a, 0);if (same) {b = a;} else {ntt(b, 0);}FOR(i, sz) a[i] *= b[i];ntt(a, 1);a.resize(n + m - 1);return a;}template <typename mint>vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {int n = len(a), m = len(b);if (!n || !m) return {};static constexpr int p0 = 167772161;static constexpr int p1 = 469762049;static constexpr int p2 = 754974721;using mint0 = modint<p0>;using mint1 = modint<p1>;using mint2 = modint<p2>;vc<mint0> a0(n), b0(m);vc<mint1> a1(n), b1(m);vc<mint2> a2(n), b2(m);FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;auto c0 = convolution_ntt<mint0>(a0, b0);auto c1 = convolution_ntt<mint1>(a1, b1);auto c2 = convolution_ntt<mint2>(a2, b2);vc<mint> c(len(c0));FOR(i, n + m - 1) {c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val);}return c;}template <typename R>vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) {using C = CFFT::C;int need = (int)a.size() + (int)b.size() - 1;int nbase = 1;while ((1 << nbase) < need) nbase++;CFFT::ensure_base(nbase);int sz = 1 << nbase;vector<C> fa(sz);for (int i = 0; i < sz; i++) {double x = (i < (int)a.size() ? a[i] : 0);double y = (i < (int)b.size() ? b[i] : 0);fa[i] = C(x, y);}CFFT::fft(fa, sz);C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);for (int i = 0; i <= (sz >> 1); i++) {int j = (sz - i) & (sz - 1);C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;fa[i] = z;}for (int i = 0; i < (sz >> 1); i++) {C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i];fa[i] = A0 + A1 * s;}CFFT::fft(fa, sz >> 1);vector<double> ret(need);for (int i = 0; i < need; i++) {ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x);}return ret;}vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {int n = len(a), m = len(b);if (!n || !m) return {};if (min(n, m) <= 2500) return convolution_naive(a, b);ll abs_sum_a = 0, abs_sum_b = 0;ll LIM = 1e15;FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i]));FOR(i, m) abs_sum_b = min(LIM, abs_sum_b + abs(b[i]));if (i128(abs_sum_a) * abs_sum_b < 1e15) {vc<double> c = convolution_fft<ll>(a, b);vc<ll> res(len(c));FOR(i, len(c)) res[i] = ll(floor(c[i] + .5));return res;}static constexpr unsigned long long MOD1 = 754974721; // 2^24static constexpr unsigned long long MOD2 = 167772161; // 2^25static constexpr unsigned long long MOD3 = 469762049; // 2^26static constexpr unsigned long long M2M3 = MOD2 * MOD3;static constexpr unsigned long long M1M3 = MOD1 * MOD3;static constexpr unsigned long long M1M2 = MOD1 * MOD2;static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1);static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2);static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3);using mint1 = modint<MOD1>;using mint2 = modint<MOD2>;using mint3 = modint<MOD3>;vc<mint1> a1(n), b1(m);vc<mint2> a2(n), b2(m);vc<mint3> a3(n), b3(m);FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i];FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i];auto c1 = convolution_ntt<mint1>(a1, b1);auto c2 = convolution_ntt<mint2>(a2, b2);auto c3 = convolution_ntt<mint3>(a3, b3);vc<ll> c(n + m - 1);FOR(i, n + m - 1) {u64 x = 0;x += (c1[i].val * i1) % MOD1 * M2M3;x += (c2[i].val * i2) % MOD2 * M1M3;x += (c3[i].val * i3) % MOD3 * M1M2;ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1));if (diff < 0) diff += MOD1;static constexpr unsigned long long offset[5]= {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};x -= offset[diff % 5];c[i] = x;}return c;}template <typename mint>vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {int n = len(a), m = len(b);if (!n || !m) return {};if (mint::can_ntt()) {if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);return convolution_ntt(a, b);}if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);return convolution_garner(a, b);}#line 2 "/home/maspy/compro/library/poly/ntt_doubling.hpp"#line 4 "/home/maspy/compro/library/poly/ntt_doubling.hpp"// 2^k 次多項式の長さ 2^k が与えられるので 2^k+1 にするtemplate <typename mint, bool transposed = false>void ntt_doubling(vector<mint>& a) {static array<mint, 30> root;static bool prepared = 0;if (!prepared) {prepared = 1;const int rank2 = mint::ntt_info().fi;root[rank2] = mint::ntt_info().se;FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; }}if constexpr (!transposed) {const int M = (int)a.size();auto b = a;ntt(b, 1);mint r = 1, zeta = root[topbit(2 * M)];FOR(i, M) b[i] *= r, r *= zeta;ntt(b, 0);copy(begin(b), end(b), back_inserter(a));} else {const int M = len(a) / 2;vc<mint> tmp = {a.begin(), a.begin() + M};a = {a.begin() + M, a.end()};transposed_ntt(a, 0);mint r = 1, zeta = root[topbit(2 * M)];FOR(i, M) a[i] *= r, r *= zeta;transposed_ntt(a, 1);FOR(i, M) a[i] += tmp[i];}}#line 5 "/home/maspy/compro/library/poly/convolution_all.hpp"template <typename T>vc<T> convolution_all(vc<vc<T>>& polys) {if (len(polys) == 0) return {T(1)};while (1) {int n = len(polys);if (n == 1) break;int m = ceil(n, 2);FOR(i, m) {if (2 * i + 1 == n) {polys[i] = polys[2 * i];} else {polys[i] = convolution(polys[2 * i], polys[2 * i + 1]);}}polys.resize(m);}return polys[0];}// product of 1-A[i]xtemplate <typename mint>vc<mint> convolution_all_1(vc<mint> A) {if (!mint::can_ntt()) {vvc<mint> polys;for (auto& a: A) polys.eb(vc<mint>({mint(1), -a}));return convolution_all(polys);}int D = 6;using poly = vc<mint>;int n = 1;while (n < len(A)) n *= 2;int k = topbit(n);vc<mint> F(n), nxt_F(n);FOR(i, len(A)) F[i] = -A[i];FOR(d, k) {int b = 1 << d;if (d < D) {fill(all(nxt_F), mint(0));for (int L = 0; L < n; L += 2 * b) {FOR(i, b) FOR(j, b) { nxt_F[L + i + j] += F[L + i] * F[L + b + j]; }FOR(i, b) nxt_F[L + b + i] += F[L + i] + F[L + b + i];}}elif (d == D) {for (int L = 0; L < n; L += 2 * b) {poly f1 = {F.begin() + L, F.begin() + L + b};poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b};f1.resize(2 * b), f2.resize(2 * b), ntt(f1, 0), ntt(f2, 0);FOR(i, b) nxt_F[L + i] = f1[i] * f2[i] + f1[i] + f2[i];FOR(i, b, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - f1[i] - f2[i];}}else {for (int L = 0; L < n; L += 2 * b) {poly f1 = {F.begin() + L, F.begin() + L + b};poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b};ntt_doubling(f1), ntt_doubling(f2);FOR(i, b) nxt_F[L + i] = f1[i] * f2[i] + f1[i] + f2[i];FOR(i, b, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - f1[i] - f2[i];}}swap(F, nxt_F);}if (k - 1 >= D) ntt(F, 1);F.eb(1), reverse(all(F));F.resize(len(A) + 1);return F;}#line 2 "/home/maspy/compro/library/poly/fps_log.hpp"#line 2 "/home/maspy/compro/library/poly/count_terms.hpp"template<typename mint>int count_terms(const vc<mint>& f){int t = 0;FOR(i, len(f)) if(f[i] != mint(0)) ++t;return t;}#line 4 "/home/maspy/compro/library/poly/fps_inv.hpp"template <typename mint>vc<mint> fps_inv_sparse(const vc<mint>& f) {int N = len(f);vc<pair<int, mint>> dat;FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);vc<mint> g(N);mint g0 = mint(1) / f[0];g[0] = g0;FOR(n, 1, N) {mint rhs = 0;for (auto&& [k, fk]: dat) {if (k > n) break;rhs -= fk * g[n - k];}g[n] = rhs * g0;}return g;}template <typename mint>vc<mint> fps_inv_dense_ntt(const vc<mint>& F) {vc<mint> G = {mint(1) / F[0]};ll N = len(F), n = 1;G.reserve(N);while (n < N) {vc<mint> f(2 * n), g(2 * n);FOR(i, min(N, 2 * n)) f[i] = F[i];FOR(i, n) g[i] = G[i];ntt(f, false), ntt(g, false);FOR(i, 2 * n) f[i] *= g[i];ntt(f, true);FOR(i, n) f[i] = 0;ntt(f, false);FOR(i, 2 * n) f[i] *= g[i];ntt(f, true);FOR(i, n, min(N, 2 * n)) G.eb(-f[i]);n *= 2;}return G;}template <typename mint>vc<mint> fps_inv_dense(const vc<mint>& F) {if (mint::can_ntt()) return fps_inv_dense_ntt(F);const int N = len(F);vc<mint> R = {mint(1) / F[0]};vc<mint> p;int m = 1;while (m < N) {p = convolution(R, R);p.resize(m + m);vc<mint> f = {F.begin(), F.begin() + min(m + m, N)};p = convolution(p, f);R.resize(m + m);FOR(i, m + m) R[i] = R[i] + R[i] - p[i];m += m;}R.resize(N);return R;}template <typename mint>vc<mint> fps_inv(const vc<mint>& f) {assert(f[0] != mint(0));int n = count_terms(f);int t = (mint::can_ntt() ? 160 : 820);return (n <= t ? fps_inv_sparse<mint>(f) : fps_inv_dense<mint>(f));}#line 5 "/home/maspy/compro/library/poly/fps_log.hpp"template <typename mint>vc<mint> fps_log_dense(const vc<mint>& f) {assert(f[0] == mint(1));ll N = len(f);vc<mint> df = f;FOR(i, N) df[i] *= mint(i);df.erase(df.begin());auto f_inv = fps_inv(f);auto g = convolution(df, f_inv);g.resize(N - 1);g.insert(g.begin(), 0);FOR(i, N) g[i] *= inv<mint>(i);return g;}template <typename mint>vc<mint> fps_log_sparse(const vc<mint>& f) {int N = f.size();vc<pair<int, mint>> dat;FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);vc<mint> F(N);vc<mint> g(N - 1);for (int n = 0; n < N - 1; ++n) {mint rhs = mint(n + 1) * f[n + 1];for (auto&& [i, fi]: dat) {if (i > n) break;rhs -= fi * g[n - i];}g[n] = rhs;F[n + 1] = rhs * inv<mint>(n + 1);}return F;}template <typename mint>vc<mint> fps_log(const vc<mint>& f) {assert(f[0] == mint(1));int n = count_terms(f);int t = (mint::can_ntt() ? 200 : 1200);return (n <= t ? fps_log_sparse<mint>(f) : fps_log_dense<mint>(f));}#line 2 "/home/maspy/compro/library/poly/fps_div.hpp"#line 5 "/home/maspy/compro/library/poly/fps_div.hpp"// f/g. f の長さで出力される.template <typename mint, bool SPARSE = false>vc<mint> fps_div(vc<mint> f, vc<mint> g) {if (SPARSE || count_terms(g) < 200) return fps_div_sparse(f, g);int n = len(f);g.resize(n);g = fps_inv<mint>(g);f = convolution(f, g);f.resize(n);return f;}// f/g ただし g は sparsetemplate <typename mint>vc<mint> fps_div_sparse(vc<mint> f, vc<mint>& g) {if (g[0] != mint(1)) {mint cf = g[0].inverse();for (auto&& x: f) x *= cf;for (auto&& x: g) x *= cf;}vc<pair<int, mint>> dat;FOR(i, 1, len(g)) if (g[i] != mint(0)) dat.eb(i, -g[i]);FOR(i, len(f)) {for (auto&& [j, x]: dat) {if (i >= j) f[i] += x * f[i - j];}}return f;}#line 2 "/home/maspy/compro/library/poly/sum_of_rationals.hpp"#line 5 "/home/maspy/compro/library/poly/sum_of_rationals.hpp"// 有理式の和を計算する。分割統治 O(Nlog^2N)。N は次数の和。template <typename mint>pair<vc<mint>, vc<mint>> sum_of_rationals(vc<pair<vc<mint>, vc<mint>>> dat) {if (len(dat) == 0) {vc<mint> f = {0}, g = {1};return {f, g};}using P = pair<vc<mint>, vc<mint>>;auto add = [&](P& a, P& b) -> P {int na = len(a.fi) - 1, da = len(a.se) - 1;int nb = len(b.fi) - 1, db = len(b.se) - 1;int n = max(na + db, da + nb);vc<mint> num(n + 1);{auto f = convolution(a.fi, b.se);FOR(i, len(f)) num[i] += f[i];}{auto f = convolution(a.se, b.fi);FOR(i, len(f)) num[i] += f[i];}auto den = convolution(a.se, b.se);return {num, den};};while (len(dat) > 1) {int n = len(dat);FOR(i, 1, n, 2) { dat[i - 1] = add(dat[i - 1], dat[i]); }FOR(i, ceil(n, 2)) dat[i] = dat[2 * i];dat.resize(ceil(n, 2));}return dat[0];}// sum wt[i]/(1-A[i]x)template <typename mint>pair<vc<mint>, vc<mint>> sum_of_rationals_1(vc<mint> A, vc<mint> wt) {using poly = vc<mint>;if (!mint::can_ntt()) {vc<pair<poly, poly>> rationals;FOR(i, len(A)) rationals.eb(poly({wt[i]}), poly({mint(1), -A[i]}));return sum_of_rationals(rationals);}int n = 1;while (n < len(A)) n *= 2;int k = topbit(n);vc<mint> F(n), G(n);vc<mint> nxt_F(n), nxt_G(n);FOR(i, len(A)) F[i] = -A[i], G[i] = wt[i];int D = 6;FOR(d, k) {int b = 1 << d;if (d < D) {fill(all(nxt_F), mint(0)), fill(all(nxt_G), mint(0));for (int L = 0; L < n; L += 2 * b) {FOR(i, b) FOR(j, b) nxt_F[L + i + j] += F[L + i] * F[L + b + j];FOR(i, b) FOR(j, b) nxt_G[L + i + j] += F[L + i] * G[L + b + j];FOR(i, b) FOR(j, b) nxt_G[L + i + j] += F[L + b + i] * G[L + j];FOR(i, b) nxt_F[L + b + i] += F[L + i] + F[L + b + i];FOR(i, b) nxt_G[L + b + i] += G[L + i] + G[L + b + i];}}elif (d == D) {for (int L = 0; L < n; L += 2 * b) {poly f1 = {F.begin() + L, F.begin() + L + b};poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b};poly g1 = {G.begin() + L, G.begin() + L + b};poly g2 = {G.begin() + L + b, G.begin() + L + 2 * b};f1.resize(2 * b), f2.resize(2 * b), g1.resize(2 * b), g2.resize(2 * b);ntt(f1, 0), ntt(f2, 0), ntt(g1, 0), ntt(g2, 0);FOR(i, b) f1[i] += 1, f2[i] += 1;FOR(i, b, 2 * b) f1[i] -= 1, f2[i] -= 1;FOR(i, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - 1;FOR(i, 2 * b) nxt_G[L + i] = g1[i] * f2[i] + g2[i] * f1[i];}}else {for (int L = 0; L < n; L += 2 * b) {poly f1 = {F.begin() + L, F.begin() + L + b};poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b};poly g1 = {G.begin() + L, G.begin() + L + b};poly g2 = {G.begin() + L + b, G.begin() + L + 2 * b};ntt_doubling(f1), ntt_doubling(f2), ntt_doubling(g1), ntt_doubling(g2);FOR(i, b) f1[i] += 1, f2[i] += 1;FOR(i, b, 2 * b) f1[i] -= 1, f2[i] -= 1;FOR(i, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - 1;FOR(i, 2 * b) nxt_G[L + i] = g1[i] * f2[i] + g2[i] * f1[i];}}swap(F, nxt_F), swap(G, nxt_G);}if (k - 1 >= D) ntt(F, 1), ntt(G, 1);F.eb(1);reverse(all(F)), reverse(all(G));F.resize(len(A) + 1);G.resize(len(A));return {G, F};}#line 5 "/home/maspy/compro/library/seq/sum_of_powers.hpp"// sum_{a in A} a^n を、n = 0, 1, ..., N で列挙template <typename T>vc<T> sum_of_powers(const vc<T>& A, ll N) {auto f = convolution_all_1<T>(A);f.resize(N + 1);f = fps_log(f);FOR(i, len(f)) f[i] = -f[i] * T(i);f[0] = len(A);return f;}// sum_{i in [L, R)} i^n を、n = 0, 1, ..., N で列挙template <typename T>vc<T> sum_of_powers_iota(ll L, ll R, ll N) {vc<T> F(N + 1), G(N + 1);T powL = 1, powR = 1;FOR(i, 1, N + 2) {powL *= T(L), powR *= T(R);F[i - 1] = (powR - powL) * fact_inv<T>(i);G[i - 1] = fact_inv<T>(i);}F = fps_div(F, G);FOR(i, N + 1) F[i] *= fact<T>(i);return F;}// sum ca^n を n=0,1,...,N で列挙template <typename T>vc<T> sum_of_powers_with_coef(const vc<T>& A, const vc<T>& C, int N) {auto [num, den] = sum_of_rationals_1(A, C);num.resize(N + 1);den.resize(N + 1);auto f = fps_inv(den);f = convolution(f, num);f.resize(N + 1);return f;}#line 2 "/home/maspy/compro/library/alg/monoid/mul.hpp"template <class T>struct Monoid_Mul {using value_type = T;using X = T;static constexpr X op(const X &x, const X &y) noexcept { return x * y; }static constexpr X inverse(const X &x) noexcept { return X(1) / x; }static constexpr X unit() { return X(1); }static constexpr bool commute = true;};#line 1 "/home/maspy/compro/library/ds/sliding_window_aggregation.hpp"template <class Monoid>struct Sliding_Window_Aggregation {using X = typename Monoid::value_type;using value_type = X;int sz = 0;vc<X> dat;vc<X> cum_l;X cum_r;Sliding_Window_Aggregation(): cum_l({Monoid::unit()}), cum_r(Monoid::unit()) {}int size() { return sz; }void push(X x) {++sz;cum_r = Monoid::op(cum_r, x);dat.eb(x);}void pop() {--sz;cum_l.pop_back();if (len(cum_l) == 0) {cum_l = {Monoid::unit()};cum_r = Monoid::unit();while (len(dat) > 1) {cum_l.eb(Monoid::op(dat.back(), cum_l.back()));dat.pop_back();}dat.pop_back();}}X lprod() { return cum_l.back(); }X rprod() { return cum_r; }X prod() { return Monoid::op(cum_l.back(), cum_r); }};// 定数倍は目に見えて遅くなるので、queue でよいときは使わないtemplate <class Monoid>struct SWAG_deque {using X = typename Monoid::value_type;using value_type = X;int sz;vc<X> dat_l, dat_r;vc<X> cum_l, cum_r;SWAG_deque() : sz(0), cum_l({Monoid::unit()}), cum_r({Monoid::unit()}) {}int size() { return sz; }void push_back(X x) {++sz;dat_r.eb(x);cum_r.eb(Monoid::op(cum_r.back(), x));}void push_front(X x) {++sz;dat_l.eb(x);cum_l.eb(Monoid::op(x, cum_l.back()));}void push(X x) { push_back(x); }void clear() {sz = 0;dat_l.clear(), dat_r.clear();cum_l = {Monoid::unit()}, cum_r = {Monoid::unit()};}void pop_front() {if (sz == 1) return clear();if (dat_l.empty()) rebuild();--sz;dat_l.pop_back();cum_l.pop_back();}void pop_back() {if (sz == 1) return clear();if (dat_r.empty()) rebuild();--sz;dat_r.pop_back();cum_r.pop_back();}void pop() { pop_front(); }X lprod() { return cum_l.back(); }X rprod() { return cum_r.back(); }X prod() { return Monoid::op(cum_l.back(), cum_r.back()); }X prod_all() { return prod(); }private:void rebuild() {vc<X> X = concat(dat_l, dat_r);clear();int m = len(X) / 2;FOR_R(i, m) push_front(X[i]);FOR(i, m, len(X)) push_back(X[i]);assert(sz == len(X));}};#line 5 "/home/maspy/compro/library/poly/lagrange_interpolate_iota.hpp"// Input: f(0), ..., f(n-1) and c. Return: f(c)template <typename T, typename enable_if<has_mod<T>::value>::type * = nullptr>T lagrange_interpolate_iota(vc<T> &f, T c) {int n = len(f);if (int(c.val) < n) return f[c.val];auto a = f;FOR(i, n) {a[i] = a[i] * fact_inv<T>(i) * fact_inv<T>(n - 1 - i);if ((n - 1 - i) & 1) a[i] = -a[i];}vc<T> lp(n + 1), rp(n + 1);lp[0] = rp[n] = 1;FOR(i, n) lp[i + 1] = lp[i] * (c - i);FOR_R(i, n) rp[i] = rp[i + 1] * (c - i);T ANS = 0;FOR(i, n) ANS += a[i] * lp[i] * rp[i + 1];return ANS;}// mod じゃない場合。かなり低次の多項式を想定している。O(n^2)// Input: f(0), ..., f(n-1) and c. Return: f(c)template <typename T, typename enable_if<!has_mod<T>::value>::type * = nullptr>T lagrange_interpolate_iota(vc<T> &f, T c) {const int LIM = 10;int n = len(f);assert(n < LIM);// (-1)^{i-j} binom(i,j)static vvc<int> C;if (C.empty()) {C.assign(LIM, vc<int>(LIM));C[0][0] = 1;FOR(n, 1, LIM) FOR(k, n + 1) {C[n][k] += C[n - 1][k];if (k) C[n][k] += C[n - 1][k - 1];}FOR(n, LIM) FOR(k, n + 1) if ((n + k) % 2) C[n][k] = -C[n][k];}// f(x) = sum a_i binom(x,i)vc<T> a(n);FOR(i, n) FOR(j, i + 1) { a[i] += f[j] * C[i][j]; }T res = 0;T b = 1;FOR(i, n) {res += a[i] * b;b = b * (c - i) / (1 + i);}return res;}// Input: f(0), ..., f(n-1) and c, m// Return: f(c), f(c+1), ..., f(c+m-1)// Complexity: M(n, n + m)template <typename mint>vc<mint> lagrange_interpolate_iota(vc<mint> &f, mint c, int m) {if (m <= 60) {vc<mint> ANS(m);FOR(i, m) ANS[i] = lagrange_interpolate_iota(f, c + mint(i));return ANS;}ll n = len(f);auto a = f;FOR(i, n) {a[i] = a[i] * fact_inv<mint>(i) * fact_inv<mint>(n - 1 - i);if ((n - 1 - i) & 1) a[i] = -a[i];}// x = c, c+1, ... に対して a0/x + a1/(x-1) + ... を求めておくvc<mint> b(n + m - 1);FOR(i, n + m - 1) b[i] = mint(1) / (c + mint(i - n + 1));a = convolution(a, b);Sliding_Window_Aggregation<Monoid_Mul<mint>> swag;vc<mint> ANS(m);ll L = 0, R = 0;FOR(i, m) {while (L < i) { swag.pop(), ++L; }while (R - L < n) { swag.push(c + mint((R++) - n + 1)); }auto coef = swag.prod();if (coef == 0) {ANS[i] = f[(c + i).val];} else {ANS[i] = a[i + n - 1] * coef;}}return ANS;}#line 1 "/home/maspy/compro/library/mod/factorial998.hpp"// 1<<20int factorial998table[1024] = {1,467742124,703158536,849331177,183632821,786787592,708945888,623860151,442444797,339076928,916211838,827641482,982515753,303461550,466748179,669060208,789885751,915736046,189957301,934038903,728735046,774755699,649374308,602288735,492352484,958678776,943233257,148504501,352124178,569334038,927469492,343841688,432351202,700916755,170721982,8283809,875807278,931632987,330722936,603566523,391470976,157944106,826756015,278928878,178606531,522053153,175494307,16217485,310769109,430912024,970167731,302127847,960178710,607169580,211863227,918097328,664502958,598427325,415194799,38321157,375608821,557298612,497769749,114695383,77784134,629192790,339438380,348348875,713806860,526342541,671850855,414726935,844082152,412454739,351143550,868784407,834684152,186057224,996072584,619190001,24770542,765280770,513490122,468949120,867194196,866447292,937135640,560788103,308335177,703539315,252044620,119916775,298069903,43651994,148641017,730387621,856452172,74265901,626807500,980602375,42825068,348086475,162321900,207340584,151258454,461547160,320321845,361026143,882876292,842563318,257705870,158156446,292795459,984763947,917068833,811332379,782439665,944504775,298167161,141501910,155584237,149720256,71954352,666430555,580966229,884747116,616367471,918981127,310328833,724405658,383796145,256700166,487819118,642491144,181867555,524937737,222137750,445244561,79921588,253457448,405659726,260707689,740044210,654653354,229885020,230551611,616689587,939003921,565960348,904184966,133298693,859220865,186139683,765071679,247651638,451157944,929341123,503724944,768266737,142218056,910573117,274579400,151387843,212671109,815271666,406331931,154251304,642676789,570372925,976277122,442985463,928799971,817581666,797627351,100113334,877639265,541537097,434482347,300960222,270085755,481153328,236088097,686884498,323505794,897572220,900787550,277507290,157634146,892066519,616420589,46056764,697140618,592483685,896871487,896388868,106444279,115102765,191484323,62322499,434613622,426026852,378184205,194359325,415197585,965735328,598860936,653751428,942602959,475099103,642401460,77868208,464952529,549976420,705774928,635299526,704085554,809044086,670938184,799176916,58985566,402328281,182103192,921913660,674272214,428301920,520916749,127424638,296779896,166780239,19634060,95873539,708947606,532272305,980167862,7015847,370183454,45567119,866949818,374428494,25583689,351370758,835388325,232690098,42002598,17055285,985022727,214528454,122907290,793349516,609331634,87133548,248246624,448572380,502875867,183097664,536117329,170926160,381772251,37038194,374439881,94285547,880631489,452052533,739811514,675382782,587926712,179133902,694266603,338843576,281485671,813341519,616512705,222785194,382494725,471654428,961907947,442140830,702296161,548575377,388901073,19119024,545916498,947169254,801677200,377657430,634980290,246239186,13175103,239754689,656729178,364003283,646568868,584909084,690387116,452007054,131381944,908149670,807287523,802277179,745423153,893994782,197548253,376096720,105840336,687751559,170787791,928507410,620382696,446955151,139665212,882526402,494793004,107171423,753993075,467588754,207595897,269813018,941027990,856873596,717085190,245280646,792026805,548741735,523767341,637697735,261200153,89666563,344573088,15832984,558492246,825051585,923222974,826620400,558080789,657328927,991078225,706029275,738905108,401212366,980043233,895405022,597894231,636951913,947342478,786075225,395095090,188433847,121279219,860403973,396099425,240442489,521535558,280382318,58023116,735594008,8696133,477645338,223630480,816606673,680021043,362424474,181667447,504295826,332167472,766361494,992840497,417671938,376941230,11880047,275790726,106186450,150546053,966438917,431896075,158021876,734833661,328332504,632143386,962477966,638741189,728804571,753715698,20536106,45105841,271673172,982138522,604809222,199722980,211807634,478008419,194715230,246865373,316443541,869035744,202922168,245262975,136244583,650969410,566222746,55188168,495968583,571946805,188658038,353720239,830419870,669127165,86710835,810103736,630008035,764354348,209246227,277861984,725469211,151404581,894191013,775554083,634671016,170299187,471849450,575347258,505276194,636730506,40086858,386228700,789875034,998219457,359035788,843760715,864829665,794240359,241486050,48334220,583177582,714653706,617669563,132782021,779225352,333301287,520569296,508276228,689073648,573645847,200419842,911561316,310562870,204959007,879280837,762843188,103128368,133300147,648946778,287218789,662474952,587555465,105622721,648151526,517033362,729251452,850555187,708613432,874408867,345608416,690718720,10813958,42384375,882264058,825490058,252850511,652942840,202604098,277615259,862885671,582470925,190843016,534488148,187675153,911660635,377262012,642854978,359397276,712333871,580131409,841639861,925383257,213683380,25291651,974815450,32032244,119030165,443676106,555727293,170519648,171131074,839941962,789829593,140975543,845347712,303299112,530420097,857005350,249174130,224087061,311280308,404814306,567648772,766512373,470895965,294358155,625218604,89534510,513216330,78173719,22818060,254922573,292417477,415060121,208989124,960117615,570018845,237661008,442774488,871349246,161574942,548661451,313471555,448096394,587422360,987939533,254478574,113844945,268886375,927289435,664834607,983476167,390569280,363763327,935767957,159015901,508613041,134148582,127417680,484767855,825835285,43847241,972918293,151969014,768480291,729490470,76727400,384998943,648970509,764966281,391326774,585299643,661473977,530021579,368308424,81083443,981417794,185781362,169555925,934957641,56005264,296483160,853982963,489694611,73207251,20297311,431253211,168162850,36271383,689526671,397669110,705876730,785504919,764896820,936514026,350141918,784778738,682324919,140913543,862125900,723248565,369074340,146936534,226913694,277886748,856792647,13654547,141461269,255233971,979535193,747662027,452683681,338311679,399620140,306913085,817524367,333578440,943193170,387930488,964713035,554372227,524201507,267870305,698863503,695139108,399857384,830659092,479624682,594238820,768224890,956955770,940576967,920740072,282055556,621677930,847367415,619094041,432519599,192780811,912052381,263304046,114280963,307107320,956809356,118706101,836710721,356893069,427113038,55360495,892694364,443807400,568616581,130165565,732273554,778059496,95936679,629634134,383940143,474733431,271200931,253893765,65679204,670721645,268831988,225698685,424701963,654858732,405695790,894299102,797306377,464723449,647679843,730366154,956550665,898568348,313188681,661403769,346715295,358990430,868898456,719464962,978551995,772931269,255694712,379904456,393101377,130818973,810783770,78951115,608848341,941552927,523163696,581658405,188869913,161971620,114600913,300038465,126906968,572973411,118017645,806069307,430432761,310699012,989119052,282768145,557792692,611036992,427168405,84497995,529589599,967936672,416953197,549641787,787274930,514952744,646568513,39329263,765390776,831388678,299074396,102522509,886062498,598990751,553048069,305737423,388746841,13007805,3445560,568306294,109543305,847740132,746222360,454654676,748993028,222910140,861308982,390243513,692742883,789475199,153430402,299806798,913070840,881332402,245792511,618823409,1817990,897836424,726794141,700802042,472214481,97004031,479899815,573979309,752576644,374801082,599964908,894966385,178103304,12240556,393873628,855241924,305678131,971858774,281586141,87362107,41844894,175133514,276243521,997376957,260427125,439339251,64661516,362212695,186181824,423316311,267640938,299252572,810040987,857956827,758991665,207700847,399398818,747579039,814755712,298373935,307448236,42074518,982127624,538863790,528558929,96501138,813255509,611769398,710541518,408153968,675346745,970094012,791931126,811516976,618049736,264048084,209805699,909045292,645349311,416989597,590393407,320547207,342653696,860169617,856611053,475149267,124801433,547187333,466598598,266454901,554467907,868909135,199244107,548833449,20952517,234169026,117025205,804238552,205574540,590283297,822322644,866010856,477388420,935768507,424373916,951967787,344871828,133969287,937034425,309380768,666909962,726492795,996576193,883938945,869749688,313581344,65216237,88860786,208895640,888760811,854567609,328142793,121852766,928690075,135269006,333105486,502240551,573712984,397698082,935117672,718828733,440474396,335628894,184935718,788258676,646732201,68099895,167036421,362572358,787671392,666366534,193503119,74429287,132805884,796935846,124574194,926012440,147265585,722608579,526866610,452261307,990444071,4595579,147427028,774597449,678783012,568563934,383628463,68242206,163493293,352851801,123192034,529859554,14733470,565063217,178575398,580871309,135817500,313966456,647215844,118781836,106243172,796669460,48496927,772979683,715961917,546863206,601711799,644312478,629259662,738295002,692301787,149995411,864799423,284186171,246177326,268779154,86400350,518698490,321709079,946212693,800553099,865864136,244789848,386206318,851633075,713794602,131117952,280474884,243820970,820033654,399700655,825581574,443639603,774376660,362476217,552383080,436759518,538430048,965968656,150434699,563163603,352073025,840124972,152029247,902082055,770264937,747653807,934664232,541451013,807031739,854866728,503502641,283479207,297947602,488469464,205196166,381583984,108455782,570592132,363674728,134077711,356931610,887112858,273780969,443297964,650953636,402662299,894089640,71844431,33030748,208583995,597099208,671156881,875032178,998244352,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};int factorial998(ll n) {constexpr int mod = 998244353;if (n >= mod) return 0;auto [q, r] = divmod<int>(n, 1 << 20);ll x = factorial998table[q];int s = q << 20;FOR(i, r) x = x * (s + i + 1) % mod;return x;}#line 10 "main.cpp"using mint = modint998;void solve() {LL(N, K);vc<mint> F(K + 10);FOR(d, 1, K + 10) {F[d] += mint(N * N - N) * mint(d).pow(K);F[d] -= mint(N - 1) * mint(d).pow(K + 1);}F = cumsum<mint>(F);mint ans = lagrange_interpolate_iota<mint>(F, N);mint ANS = mint(2) * factorial998(N - 2) * ans;print(ANS);}signed main() {int T = 1;// INT(T);FOR(T) solve();return 0;}