結果
問題 | No.2747 Permutation Adjacent Sum |
ユーザー | maspy |
提出日時 | 2024-08-03 17:33:03 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 255 ms / 3,000 ms |
コード長 | 61,128 bytes |
コンパイル時間 | 8,424 ms |
コンパイル使用メモリ | 343,916 KB |
実行使用メモリ | 26,808 KB |
最終ジャッジ日時 | 2024-08-03 17:33:18 |
合計ジャッジ時間 | 14,685 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 86 ms
12,556 KB |
testcase_01 | AC | 11 ms
5,248 KB |
testcase_02 | AC | 55 ms
8,956 KB |
testcase_03 | AC | 9 ms
5,376 KB |
testcase_04 | AC | 88 ms
13,196 KB |
testcase_05 | AC | 255 ms
26,624 KB |
testcase_06 | AC | 96 ms
13,984 KB |
testcase_07 | AC | 81 ms
12,232 KB |
testcase_08 | AC | 143 ms
17,732 KB |
testcase_09 | AC | 201 ms
23,448 KB |
testcase_10 | AC | 23 ms
5,724 KB |
testcase_11 | AC | 83 ms
12,512 KB |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 35 ms
7,132 KB |
testcase_14 | AC | 127 ms
17,208 KB |
testcase_15 | AC | 218 ms
23,076 KB |
testcase_16 | AC | 89 ms
12,984 KB |
testcase_17 | AC | 183 ms
21,612 KB |
testcase_18 | AC | 173 ms
20,516 KB |
testcase_19 | AC | 18 ms
5,376 KB |
testcase_20 | AC | 90 ms
13,316 KB |
testcase_21 | AC | 144 ms
17,976 KB |
testcase_22 | AC | 151 ms
19,012 KB |
testcase_23 | AC | 69 ms
11,388 KB |
testcase_24 | AC | 75 ms
11,864 KB |
testcase_25 | AC | 53 ms
8,444 KB |
testcase_26 | AC | 127 ms
17,120 KB |
testcase_27 | AC | 149 ms
18,112 KB |
testcase_28 | AC | 142 ms
17,532 KB |
testcase_29 | AC | 91 ms
13,340 KB |
testcase_30 | AC | 230 ms
26,808 KB |
testcase_31 | AC | 242 ms
26,656 KB |
testcase_32 | AC | 238 ms
26,676 KB |
testcase_33 | AC | 232 ms
26,772 KB |
testcase_34 | AC | 231 ms
26,772 KB |
testcase_35 | AC | 1 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
ソースコード
#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/2747" #line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include <bits/stdc++.h> using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'010'000'000; template <> constexpr ll infty<ll> = 2'020'000'000'000'000'000; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } template <typename T, typename... Vectors> vc<T> concat(vc<T> &first, const Vectors &... others) { vc<T> res = first; (res.insert(res.end(), others.begin(), others.end()), ...); return res; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #if defined(LOCAL) #define SHOW(...) \ SHOW_IMPL(__VA_ARGS__, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__) #define SHOW_IMPL(_1, _2, _3, _4, NAME, ...) NAME #define SHOW1(x) print(#x, "=", (x)), flush() #define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush() #define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush() #define SHOW4(x, y, z, w) \ print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush() #else #define SHOW(...) #endif #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 5 "main.cpp" #line 2 "/home/maspy/compro/library/mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "/home/maspy/compro/library/mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1004535809) return {21, 836905998}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 2 "/home/maspy/compro/library/poly/convolution_all.hpp" #line 2 "/home/maspy/compro/library/mod/mod_inv.hpp" // long でも大丈夫 // (val * x - 1) が mod の倍数になるようにする // 特に mod=0 なら x=0 が満たす ll mod_inv(ll val, ll mod) { if (mod == 0) return 0; mod = abs(mod); val %= mod; if (val < 0) val += mod; ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } #line 2 "/home/maspy/compro/library/mod/crt3.hpp" constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) { a %= mod; u64 res = 1; FOR(32) { if (n & 1) res = res * a % mod; a = a * a % mod, n /= 2; } return res; } template <typename T, u32 p0, u32 p1> T CRT2(u64 a0, u64 a1) { static_assert(p0 < p1); static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1); u64 c = (a1 - a0 + p1) * x0_1 % p1; return a0 + c * p0; } template <typename T, u32 p0, u32 p1, u32 p2> T CRT3(u64 a0, u64 a1, u64 a2) { static_assert(p0 < p1 && p1 < p2); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 p01 = u64(p0) * p1; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; return T(ans_1) + T(c) * T(p01); } template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4> T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) { static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4); static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3); static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4); static constexpr u64 p01 = u64(p0) * p1; static constexpr u64 p23 = u64(p2) * p3; u64 c = (a1 - a0 + p1) * x1 % p1; u64 ans_1 = a0 + c * p0; c = (a2 - ans_1 % p2 + p2) * x2 % p2; u128 ans_2 = ans_1 + c * static_cast<u128>(p01); c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3; u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01; c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4; return T(ans_3) + T(c) * T(p01) * T(p23); } #line 2 "/home/maspy/compro/library/poly/convolution_naive.hpp" template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr> vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) { int n = int(a.size()), m = int(b.size()); if (n > m) return convolution_naive<T>(b, a); if (n == 0) return {}; vector<T> ans(n + m - 1); FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j]; return ans; } template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr> vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) { int n = int(a.size()), m = int(b.size()); if (n > m) return convolution_naive<T>(b, a); if (n == 0) return {}; vc<T> ans(n + m - 1); if (n <= 16 && (T::get_mod() < (1 << 30))) { for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); u64 sm = 0; for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); } ans[k] = sm; } } else { for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); u128 sm = 0; for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); } ans[k] = T::raw(sm % T::get_mod()); } } return ans; } #line 2 "/home/maspy/compro/library/poly/convolution_karatsuba.hpp" // 任意の環でできる template <typename T> vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) { const int thresh = 30; if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g); int n = max(len(f), len(g)); int m = ceil(n, 2); vc<T> f1, f2, g1, g2; if (len(f) < m) f1 = f; if (len(f) >= m) f1 = {f.begin(), f.begin() + m}; if (len(f) >= m) f2 = {f.begin() + m, f.end()}; if (len(g) < m) g1 = g; if (len(g) >= m) g1 = {g.begin(), g.begin() + m}; if (len(g) >= m) g2 = {g.begin() + m, g.end()}; vc<T> a = convolution_karatsuba(f1, g1); vc<T> b = convolution_karatsuba(f2, g2); FOR(i, len(f2)) f1[i] += f2[i]; FOR(i, len(g2)) g1[i] += g2[i]; vc<T> c = convolution_karatsuba(f1, g1); vc<T> F(len(f) + len(g) - 1); assert(2 * m + len(b) <= len(F)); FOR(i, len(a)) F[i] += a[i], c[i] -= a[i]; FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i]; if (c.back() == T(0)) c.pop_back(); FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i]; return F; } #line 2 "/home/maspy/compro/library/poly/ntt.hpp" template <class mint> void ntt(vector<mint>& a, bool inverse) { assert(mint::can_ntt()); const int rank2 = mint::ntt_info().fi; const int mod = mint::get_mod(); static array<mint, 30> root, iroot; static array<mint, 30> rate2, irate2; static array<mint, 30> rate3, irate3; assert(rank2 != -1 && len(a) <= (1 << max(0, rank2))); static bool prepared = 0; if (!prepared) { prepared = 1; root[rank2] = mint::ntt_info().se; iroot[rank2] = mint(1) / root[rank2]; FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } int n = int(a.size()); int h = topbit(n); assert(n == 1 << h); if (!inverse) { int len = 0; while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; FOR(s, 1 << len) { int offset = s << (h - len); FOR(i, p) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } rot *= rate2[topbit(~s & -~s)]; } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { u64 mod2 = u64(mod) * mod; u64 a0 = a[i + offset].val; u64 a1 = u64(a[i + offset + p].val) * rot.val; u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val; u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val; u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val; u64 na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } rot *= rate3[topbit(~s & -~s)]; } len += 2; } } } else { mint coef = mint(1) / mint(len(a)); FOR(i, len(a)) a[i] *= coef; int len = h; while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; FOR(s, 1 << (len - 1)) { int offset = s << (h - len + 1); FOR(i, p) { u64 l = a[i + offset].val; u64 r = a[i + offset + p].val; a[i + offset] = l + r; a[i + offset + p] = (mod + l - r) * irot.val; } irot *= irate2[topbit(~s & -~s)]; } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = iroot[2]; FOR(s, (1 << (len - 2))) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { u64 a0 = a[i + offset + 0 * p].val; u64 a1 = a[i + offset + 1 * p].val; u64 a2 = a[i + offset + 2 * p].val; u64 a3 = a[i + offset + 3 * p].val; u64 x = (mod + a2 - a3) * iimag.val % mod; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val; a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val; a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val; } irot *= irate3[topbit(~s & -~s)]; } len -= 2; } } } } #line 1 "/home/maspy/compro/library/poly/fft.hpp" namespace CFFT { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C& c) const { return C(x + c.x, y + c.y); } inline C operator-(const C& c) const { return C(x - c.x, y - c.y); } inline C operator*(const C& c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector<C> rts = {{0, 0}, {1, 0}}; vector<int> rev = {0, 1}; void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while (base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for (int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector<C>& a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } } // namespace CFFT #line 9 "/home/maspy/compro/library/poly/convolution.hpp" template <class mint> vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) { if (a.empty() || b.empty()) return {}; int n = int(a.size()), m = int(b.size()); int sz = 1; while (sz < n + m - 1) sz *= 2; // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。 if ((n + m - 3) <= sz / 2) { auto a_last = a.back(), b_last = b.back(); a.pop_back(), b.pop_back(); auto c = convolution(a, b); c.resize(n + m - 1); c[n + m - 2] = a_last * b_last; FOR(i, len(a)) c[i + len(b)] += a[i] * b_last; FOR(i, len(b)) c[i + len(a)] += b[i] * a_last; return c; } a.resize(sz), b.resize(sz); bool same = a == b; ntt(a, 0); if (same) { b = a; } else { ntt(b, 0); } FOR(i, sz) a[i] *= b[i]; ntt(a, 1); a.resize(n + m - 1); return a; } template <typename mint> vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; static constexpr int p0 = 167772161; static constexpr int p1 = 469762049; static constexpr int p2 = 754974721; using mint0 = modint<p0>; using mint1 = modint<p1>; using mint2 = modint<p2>; vc<mint0> a0(n), b0(m); vc<mint1> a1(n), b1(m); vc<mint2> a2(n), b2(m); FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val; FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val; auto c0 = convolution_ntt<mint0>(a0, b0); auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); vc<mint> c(len(c0)); FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); } return c; } template <typename R> vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) { using C = CFFT::C; int need = (int)a.size() + (int)b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; CFFT::ensure_base(nbase); int sz = 1 << nbase; vector<C> fa(sz); for (int i = 0; i < sz; i++) { double x = (i < (int)a.size() ? a[i] : 0); double y = (i < (int)b.size() ? b[i] : 0); fa[i] = C(x, y); } CFFT::fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for (int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } CFFT::fft(fa, sz >> 1); vector<double> ret(need); for (int i = 0; i < need; i++) { ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 2500) return convolution_naive(a, b); ll abs_sum_a = 0, abs_sum_b = 0; ll LIM = 1e15; FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i])); FOR(i, m) abs_sum_b = min(LIM, abs_sum_b + abs(b[i])); if (i128(abs_sum_a) * abs_sum_b < 1e15) { vc<double> c = convolution_fft<ll>(a, b); vc<ll> res(len(c)); FOR(i, len(c)) res[i] = ll(floor(c[i] + .5)); return res; } static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1); static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2); static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3); using mint1 = modint<MOD1>; using mint2 = modint<MOD2>; using mint3 = modint<MOD3>; vc<mint1> a1(n), b1(m); vc<mint2> a2(n), b2(m); vc<mint3> a3(n), b3(m); FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i]; FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i]; auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); auto c3 = convolution_ntt<mint3>(a3, b3); vc<ll> c(n + m - 1); FOR(i, n + m - 1) { u64 x = 0; x += (c1[i].val * i1) % MOD1 * M2M3; x += (c2[i].val * i2) % MOD2 * M1M3; x += (c3[i].val * i3) % MOD3 * M1M2; ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } template <typename mint> vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (mint::can_ntt()) { if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b); return convolution_ntt(a, b); } if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b); return convolution_garner(a, b); } #line 2 "/home/maspy/compro/library/poly/ntt_doubling.hpp" #line 4 "/home/maspy/compro/library/poly/ntt_doubling.hpp" // 2^k 次多項式の長さ 2^k が与えられるので 2^k+1 にする template <typename mint, bool transposed = false> void ntt_doubling(vector<mint>& a) { static array<mint, 30> root; static bool prepared = 0; if (!prepared) { prepared = 1; const int rank2 = mint::ntt_info().fi; root[rank2] = mint::ntt_info().se; FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; } } if constexpr (!transposed) { const int M = (int)a.size(); auto b = a; ntt(b, 1); mint r = 1, zeta = root[topbit(2 * M)]; FOR(i, M) b[i] *= r, r *= zeta; ntt(b, 0); copy(begin(b), end(b), back_inserter(a)); } else { const int M = len(a) / 2; vc<mint> tmp = {a.begin(), a.begin() + M}; a = {a.begin() + M, a.end()}; transposed_ntt(a, 0); mint r = 1, zeta = root[topbit(2 * M)]; FOR(i, M) a[i] *= r, r *= zeta; transposed_ntt(a, 1); FOR(i, M) a[i] += tmp[i]; } } #line 5 "/home/maspy/compro/library/poly/convolution_all.hpp" template <typename T> vc<T> convolution_all(vc<vc<T>>& polys) { if (len(polys) == 0) return {T(1)}; while (1) { int n = len(polys); if (n == 1) break; int m = ceil(n, 2); FOR(i, m) { if (2 * i + 1 == n) { polys[i] = polys[2 * i]; } else { polys[i] = convolution(polys[2 * i], polys[2 * i + 1]); } } polys.resize(m); } return polys[0]; } // product of 1-A[i]x template <typename mint> vc<mint> convolution_all_1(vc<mint> A) { if (!mint::can_ntt()) { vvc<mint> polys; for (auto& a: A) polys.eb(vc<mint>({mint(1), -a})); return convolution_all(polys); } int D = 6; using poly = vc<mint>; int n = 1; while (n < len(A)) n *= 2; int k = topbit(n); vc<mint> F(n), nxt_F(n); FOR(i, len(A)) F[i] = -A[i]; FOR(d, k) { int b = 1 << d; if (d < D) { fill(all(nxt_F), mint(0)); for (int L = 0; L < n; L += 2 * b) { FOR(i, b) FOR(j, b) { nxt_F[L + i + j] += F[L + i] * F[L + b + j]; } FOR(i, b) nxt_F[L + b + i] += F[L + i] + F[L + b + i]; } } elif (d == D) { for (int L = 0; L < n; L += 2 * b) { poly f1 = {F.begin() + L, F.begin() + L + b}; poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b}; f1.resize(2 * b), f2.resize(2 * b), ntt(f1, 0), ntt(f2, 0); FOR(i, b) nxt_F[L + i] = f1[i] * f2[i] + f1[i] + f2[i]; FOR(i, b, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - f1[i] - f2[i]; } } else { for (int L = 0; L < n; L += 2 * b) { poly f1 = {F.begin() + L, F.begin() + L + b}; poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b}; ntt_doubling(f1), ntt_doubling(f2); FOR(i, b) nxt_F[L + i] = f1[i] * f2[i] + f1[i] + f2[i]; FOR(i, b, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - f1[i] - f2[i]; } } swap(F, nxt_F); } if (k - 1 >= D) ntt(F, 1); F.eb(1), reverse(all(F)); F.resize(len(A) + 1); return F; } #line 2 "/home/maspy/compro/library/poly/fps_log.hpp" #line 2 "/home/maspy/compro/library/poly/count_terms.hpp" template<typename mint> int count_terms(const vc<mint>& f){ int t = 0; FOR(i, len(f)) if(f[i] != mint(0)) ++t; return t; } #line 4 "/home/maspy/compro/library/poly/fps_inv.hpp" template <typename mint> vc<mint> fps_inv_sparse(const vc<mint>& f) { int N = len(f); vc<pair<int, mint>> dat; FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]); vc<mint> g(N); mint g0 = mint(1) / f[0]; g[0] = g0; FOR(n, 1, N) { mint rhs = 0; for (auto&& [k, fk]: dat) { if (k > n) break; rhs -= fk * g[n - k]; } g[n] = rhs * g0; } return g; } template <typename mint> vc<mint> fps_inv_dense_ntt(const vc<mint>& F) { vc<mint> G = {mint(1) / F[0]}; ll N = len(F), n = 1; G.reserve(N); while (n < N) { vc<mint> f(2 * n), g(2 * n); FOR(i, min(N, 2 * n)) f[i] = F[i]; FOR(i, n) g[i] = G[i]; ntt(f, false), ntt(g, false); FOR(i, 2 * n) f[i] *= g[i]; ntt(f, true); FOR(i, n) f[i] = 0; ntt(f, false); FOR(i, 2 * n) f[i] *= g[i]; ntt(f, true); FOR(i, n, min(N, 2 * n)) G.eb(-f[i]); n *= 2; } return G; } template <typename mint> vc<mint> fps_inv_dense(const vc<mint>& F) { if (mint::can_ntt()) return fps_inv_dense_ntt(F); const int N = len(F); vc<mint> R = {mint(1) / F[0]}; vc<mint> p; int m = 1; while (m < N) { p = convolution(R, R); p.resize(m + m); vc<mint> f = {F.begin(), F.begin() + min(m + m, N)}; p = convolution(p, f); R.resize(m + m); FOR(i, m + m) R[i] = R[i] + R[i] - p[i]; m += m; } R.resize(N); return R; } template <typename mint> vc<mint> fps_inv(const vc<mint>& f) { assert(f[0] != mint(0)); int n = count_terms(f); int t = (mint::can_ntt() ? 160 : 820); return (n <= t ? fps_inv_sparse<mint>(f) : fps_inv_dense<mint>(f)); } #line 5 "/home/maspy/compro/library/poly/fps_log.hpp" template <typename mint> vc<mint> fps_log_dense(const vc<mint>& f) { assert(f[0] == mint(1)); ll N = len(f); vc<mint> df = f; FOR(i, N) df[i] *= mint(i); df.erase(df.begin()); auto f_inv = fps_inv(f); auto g = convolution(df, f_inv); g.resize(N - 1); g.insert(g.begin(), 0); FOR(i, N) g[i] *= inv<mint>(i); return g; } template <typename mint> vc<mint> fps_log_sparse(const vc<mint>& f) { int N = f.size(); vc<pair<int, mint>> dat; FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]); vc<mint> F(N); vc<mint> g(N - 1); for (int n = 0; n < N - 1; ++n) { mint rhs = mint(n + 1) * f[n + 1]; for (auto&& [i, fi]: dat) { if (i > n) break; rhs -= fi * g[n - i]; } g[n] = rhs; F[n + 1] = rhs * inv<mint>(n + 1); } return F; } template <typename mint> vc<mint> fps_log(const vc<mint>& f) { assert(f[0] == mint(1)); int n = count_terms(f); int t = (mint::can_ntt() ? 200 : 1200); return (n <= t ? fps_log_sparse<mint>(f) : fps_log_dense<mint>(f)); } #line 2 "/home/maspy/compro/library/poly/fps_div.hpp" #line 5 "/home/maspy/compro/library/poly/fps_div.hpp" // f/g. f の長さで出力される. template <typename mint, bool SPARSE = false> vc<mint> fps_div(vc<mint> f, vc<mint> g) { if (SPARSE || count_terms(g) < 200) return fps_div_sparse(f, g); int n = len(f); g.resize(n); g = fps_inv<mint>(g); f = convolution(f, g); f.resize(n); return f; } // f/g ただし g は sparse template <typename mint> vc<mint> fps_div_sparse(vc<mint> f, vc<mint>& g) { if (g[0] != mint(1)) { mint cf = g[0].inverse(); for (auto&& x: f) x *= cf; for (auto&& x: g) x *= cf; } vc<pair<int, mint>> dat; FOR(i, 1, len(g)) if (g[i] != mint(0)) dat.eb(i, -g[i]); FOR(i, len(f)) { for (auto&& [j, x]: dat) { if (i >= j) f[i] += x * f[i - j]; } } return f; } #line 2 "/home/maspy/compro/library/poly/sum_of_rationals.hpp" #line 5 "/home/maspy/compro/library/poly/sum_of_rationals.hpp" // 有理式の和を計算する。分割統治 O(Nlog^2N)。N は次数の和。 template <typename mint> pair<vc<mint>, vc<mint>> sum_of_rationals(vc<pair<vc<mint>, vc<mint>>> dat) { if (len(dat) == 0) { vc<mint> f = {0}, g = {1}; return {f, g}; } using P = pair<vc<mint>, vc<mint>>; auto add = [&](P& a, P& b) -> P { int na = len(a.fi) - 1, da = len(a.se) - 1; int nb = len(b.fi) - 1, db = len(b.se) - 1; int n = max(na + db, da + nb); vc<mint> num(n + 1); { auto f = convolution(a.fi, b.se); FOR(i, len(f)) num[i] += f[i]; } { auto f = convolution(a.se, b.fi); FOR(i, len(f)) num[i] += f[i]; } auto den = convolution(a.se, b.se); return {num, den}; }; while (len(dat) > 1) { int n = len(dat); FOR(i, 1, n, 2) { dat[i - 1] = add(dat[i - 1], dat[i]); } FOR(i, ceil(n, 2)) dat[i] = dat[2 * i]; dat.resize(ceil(n, 2)); } return dat[0]; } // sum wt[i]/(1-A[i]x) template <typename mint> pair<vc<mint>, vc<mint>> sum_of_rationals_1(vc<mint> A, vc<mint> wt) { using poly = vc<mint>; if (!mint::can_ntt()) { vc<pair<poly, poly>> rationals; FOR(i, len(A)) rationals.eb(poly({wt[i]}), poly({mint(1), -A[i]})); return sum_of_rationals(rationals); } int n = 1; while (n < len(A)) n *= 2; int k = topbit(n); vc<mint> F(n), G(n); vc<mint> nxt_F(n), nxt_G(n); FOR(i, len(A)) F[i] = -A[i], G[i] = wt[i]; int D = 6; FOR(d, k) { int b = 1 << d; if (d < D) { fill(all(nxt_F), mint(0)), fill(all(nxt_G), mint(0)); for (int L = 0; L < n; L += 2 * b) { FOR(i, b) FOR(j, b) nxt_F[L + i + j] += F[L + i] * F[L + b + j]; FOR(i, b) FOR(j, b) nxt_G[L + i + j] += F[L + i] * G[L + b + j]; FOR(i, b) FOR(j, b) nxt_G[L + i + j] += F[L + b + i] * G[L + j]; FOR(i, b) nxt_F[L + b + i] += F[L + i] + F[L + b + i]; FOR(i, b) nxt_G[L + b + i] += G[L + i] + G[L + b + i]; } } elif (d == D) { for (int L = 0; L < n; L += 2 * b) { poly f1 = {F.begin() + L, F.begin() + L + b}; poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b}; poly g1 = {G.begin() + L, G.begin() + L + b}; poly g2 = {G.begin() + L + b, G.begin() + L + 2 * b}; f1.resize(2 * b), f2.resize(2 * b), g1.resize(2 * b), g2.resize(2 * b); ntt(f1, 0), ntt(f2, 0), ntt(g1, 0), ntt(g2, 0); FOR(i, b) f1[i] += 1, f2[i] += 1; FOR(i, b, 2 * b) f1[i] -= 1, f2[i] -= 1; FOR(i, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - 1; FOR(i, 2 * b) nxt_G[L + i] = g1[i] * f2[i] + g2[i] * f1[i]; } } else { for (int L = 0; L < n; L += 2 * b) { poly f1 = {F.begin() + L, F.begin() + L + b}; poly f2 = {F.begin() + L + b, F.begin() + L + 2 * b}; poly g1 = {G.begin() + L, G.begin() + L + b}; poly g2 = {G.begin() + L + b, G.begin() + L + 2 * b}; ntt_doubling(f1), ntt_doubling(f2), ntt_doubling(g1), ntt_doubling(g2); FOR(i, b) f1[i] += 1, f2[i] += 1; FOR(i, b, 2 * b) f1[i] -= 1, f2[i] -= 1; FOR(i, 2 * b) nxt_F[L + i] = f1[i] * f2[i] - 1; FOR(i, 2 * b) nxt_G[L + i] = g1[i] * f2[i] + g2[i] * f1[i]; } } swap(F, nxt_F), swap(G, nxt_G); } if (k - 1 >= D) ntt(F, 1), ntt(G, 1); F.eb(1); reverse(all(F)), reverse(all(G)); F.resize(len(A) + 1); G.resize(len(A)); return {G, F}; } #line 5 "/home/maspy/compro/library/seq/sum_of_powers.hpp" // sum_{a in A} a^n を、n = 0, 1, ..., N で列挙 template <typename T> vc<T> sum_of_powers(const vc<T>& A, ll N) { auto f = convolution_all_1<T>(A); f.resize(N + 1); f = fps_log(f); FOR(i, len(f)) f[i] = -f[i] * T(i); f[0] = len(A); return f; } // sum_{i in [L, R)} i^n を、n = 0, 1, ..., N で列挙 template <typename T> vc<T> sum_of_powers_iota(ll L, ll R, ll N) { vc<T> F(N + 1), G(N + 1); T powL = 1, powR = 1; FOR(i, 1, N + 2) { powL *= T(L), powR *= T(R); F[i - 1] = (powR - powL) * fact_inv<T>(i); G[i - 1] = fact_inv<T>(i); } F = fps_div(F, G); FOR(i, N + 1) F[i] *= fact<T>(i); return F; } // sum ca^n を n=0,1,...,N で列挙 template <typename T> vc<T> sum_of_powers_with_coef(const vc<T>& A, const vc<T>& C, int N) { auto [num, den] = sum_of_rationals_1(A, C); num.resize(N + 1); den.resize(N + 1); auto f = fps_inv(den); f = convolution(f, num); f.resize(N + 1); return f; } #line 2 "/home/maspy/compro/library/alg/monoid/mul.hpp" template <class T> struct Monoid_Mul { using value_type = T; using X = T; static constexpr X op(const X &x, const X &y) noexcept { return x * y; } static constexpr X inverse(const X &x) noexcept { return X(1) / x; } static constexpr X unit() { return X(1); } static constexpr bool commute = true; }; #line 1 "/home/maspy/compro/library/ds/sliding_window_aggregation.hpp" template <class Monoid> struct Sliding_Window_Aggregation { using X = typename Monoid::value_type; using value_type = X; int sz = 0; vc<X> dat; vc<X> cum_l; X cum_r; Sliding_Window_Aggregation() : cum_l({Monoid::unit()}), cum_r(Monoid::unit()) {} int size() { return sz; } void push(X x) { ++sz; cum_r = Monoid::op(cum_r, x); dat.eb(x); } void pop() { --sz; cum_l.pop_back(); if (len(cum_l) == 0) { cum_l = {Monoid::unit()}; cum_r = Monoid::unit(); while (len(dat) > 1) { cum_l.eb(Monoid::op(dat.back(), cum_l.back())); dat.pop_back(); } dat.pop_back(); } } X lprod() { return cum_l.back(); } X rprod() { return cum_r; } X prod() { return Monoid::op(cum_l.back(), cum_r); } }; // 定数倍は目に見えて遅くなるので、queue でよいときは使わない template <class Monoid> struct SWAG_deque { using X = typename Monoid::value_type; using value_type = X; int sz; vc<X> dat_l, dat_r; vc<X> cum_l, cum_r; SWAG_deque() : sz(0), cum_l({Monoid::unit()}), cum_r({Monoid::unit()}) {} int size() { return sz; } void push_back(X x) { ++sz; dat_r.eb(x); cum_r.eb(Monoid::op(cum_r.back(), x)); } void push_front(X x) { ++sz; dat_l.eb(x); cum_l.eb(Monoid::op(x, cum_l.back())); } void push(X x) { push_back(x); } void clear() { sz = 0; dat_l.clear(), dat_r.clear(); cum_l = {Monoid::unit()}, cum_r = {Monoid::unit()}; } void pop_front() { if (sz == 1) return clear(); if (dat_l.empty()) rebuild(); --sz; dat_l.pop_back(); cum_l.pop_back(); } void pop_back() { if (sz == 1) return clear(); if (dat_r.empty()) rebuild(); --sz; dat_r.pop_back(); cum_r.pop_back(); } void pop() { pop_front(); } X lprod() { return cum_l.back(); } X rprod() { return cum_r.back(); } X prod() { return Monoid::op(cum_l.back(), cum_r.back()); } X prod_all() { return prod(); } private: void rebuild() { vc<X> X = concat(dat_l, dat_r); clear(); int m = len(X) / 2; FOR_R(i, m) push_front(X[i]); FOR(i, m, len(X)) push_back(X[i]); assert(sz == len(X)); } }; #line 5 "/home/maspy/compro/library/poly/lagrange_interpolate_iota.hpp" // Input: f(0), ..., f(n-1) and c. Return: f(c) template <typename T, typename enable_if<has_mod<T>::value>::type * = nullptr> T lagrange_interpolate_iota(vc<T> &f, T c) { int n = len(f); if (int(c.val) < n) return f[c.val]; auto a = f; FOR(i, n) { a[i] = a[i] * fact_inv<T>(i) * fact_inv<T>(n - 1 - i); if ((n - 1 - i) & 1) a[i] = -a[i]; } vc<T> lp(n + 1), rp(n + 1); lp[0] = rp[n] = 1; FOR(i, n) lp[i + 1] = lp[i] * (c - i); FOR_R(i, n) rp[i] = rp[i + 1] * (c - i); T ANS = 0; FOR(i, n) ANS += a[i] * lp[i] * rp[i + 1]; return ANS; } // mod じゃない場合。かなり低次の多項式を想定している。O(n^2) // Input: f(0), ..., f(n-1) and c. Return: f(c) template <typename T, typename enable_if<!has_mod<T>::value>::type * = nullptr> T lagrange_interpolate_iota(vc<T> &f, T c) { const int LIM = 10; int n = len(f); assert(n < LIM); // (-1)^{i-j} binom(i,j) static vvc<int> C; if (C.empty()) { C.assign(LIM, vc<int>(LIM)); C[0][0] = 1; FOR(n, 1, LIM) FOR(k, n + 1) { C[n][k] += C[n - 1][k]; if (k) C[n][k] += C[n - 1][k - 1]; } FOR(n, LIM) FOR(k, n + 1) if ((n + k) % 2) C[n][k] = -C[n][k]; } // f(x) = sum a_i binom(x,i) vc<T> a(n); FOR(i, n) FOR(j, i + 1) { a[i] += f[j] * C[i][j]; } T res = 0; T b = 1; FOR(i, n) { res += a[i] * b; b = b * (c - i) / (1 + i); } return res; } // Input: f(0), ..., f(n-1) and c, m // Return: f(c), f(c+1), ..., f(c+m-1) // Complexity: M(n, n + m) template <typename mint> vc<mint> lagrange_interpolate_iota(vc<mint> &f, mint c, int m) { if (m <= 60) { vc<mint> ANS(m); FOR(i, m) ANS[i] = lagrange_interpolate_iota(f, c + mint(i)); return ANS; } ll n = len(f); auto a = f; FOR(i, n) { a[i] = a[i] * fact_inv<mint>(i) * fact_inv<mint>(n - 1 - i); if ((n - 1 - i) & 1) a[i] = -a[i]; } // x = c, c+1, ... に対して a0/x + a1/(x-1) + ... を求めておく vc<mint> b(n + m - 1); FOR(i, n + m - 1) b[i] = mint(1) / (c + mint(i - n + 1)); a = convolution(a, b); Sliding_Window_Aggregation<Monoid_Mul<mint>> swag; vc<mint> ANS(m); ll L = 0, R = 0; FOR(i, m) { while (L < i) { swag.pop(), ++L; } while (R - L < n) { swag.push(c + mint((R++) - n + 1)); } auto coef = swag.prod(); if (coef == 0) { ANS[i] = f[(c + i).val]; } else { ANS[i] = a[i + n - 1] * coef; } } return ANS; } #line 1 "/home/maspy/compro/library/mod/factorial998.hpp" // 1<<20 int factorial998table[1024] = {1,467742124,703158536,849331177,183632821,786787592,708945888,623860151,442444797,339076928,916211838,827641482,982515753,303461550,466748179,669060208,789885751,915736046,189957301,934038903,728735046,774755699,649374308,602288735,492352484,958678776,943233257,148504501,352124178,569334038,927469492,343841688,432351202,700916755,170721982,8283809,875807278,931632987,330722936,603566523,391470976,157944106,826756015,278928878,178606531,522053153,175494307,16217485,310769109,430912024,970167731,302127847,960178710,607169580,211863227,918097328,664502958,598427325,415194799,38321157,375608821,557298612,497769749,114695383,77784134,629192790,339438380,348348875,713806860,526342541,671850855,414726935,844082152,412454739,351143550,868784407,834684152,186057224,996072584,619190001,24770542,765280770,513490122,468949120,867194196,866447292,937135640,560788103,308335177,703539315,252044620,119916775,298069903,43651994,148641017,730387621,856452172,74265901,626807500,980602375,42825068,348086475,162321900,207340584,151258454,461547160,320321845,361026143,882876292,842563318,257705870,158156446,292795459,984763947,917068833,811332379,782439665,944504775,298167161,141501910,155584237,149720256,71954352,666430555,580966229,884747116,616367471,918981127,310328833,724405658,383796145,256700166,487819118,642491144,181867555,524937737,222137750,445244561,79921588,253457448,405659726,260707689,740044210,654653354,229885020,230551611,616689587,939003921,565960348,904184966,133298693,859220865,186139683,765071679,247651638,451157944,929341123,503724944,768266737,142218056,910573117,274579400,151387843,212671109,815271666,406331931,154251304,642676789,570372925,976277122,442985463,928799971,817581666,797627351,100113334,877639265,541537097,434482347,300960222,270085755,481153328,236088097,686884498,323505794,897572220,900787550,277507290,157634146,892066519,616420589,46056764,697140618,592483685,896871487,896388868,106444279,115102765,191484323,62322499,434613622,426026852,378184205,194359325,415197585,965735328,598860936,653751428,942602959,475099103,642401460,77868208,464952529,549976420,705774928,635299526,704085554,809044086,670938184,799176916,58985566,402328281,182103192,921913660,674272214,428301920,520916749,127424638,296779896,166780239,19634060,95873539,708947606,532272305,980167862,7015847,370183454,45567119,866949818,374428494,25583689,351370758,835388325,232690098,42002598,17055285,985022727,214528454,122907290,793349516,609331634,87133548,248246624,448572380,502875867,183097664,536117329,170926160,381772251,37038194,374439881,94285547,880631489,452052533,739811514,675382782,587926712,179133902,694266603,338843576,281485671,813341519,616512705,222785194,382494725,471654428,961907947,442140830,702296161,548575377,388901073,19119024,545916498,947169254,801677200,377657430,634980290,246239186,13175103,239754689,656729178,364003283,646568868,584909084,690387116,452007054,131381944,908149670,807287523,802277179,745423153,893994782,197548253,376096720,105840336,687751559,170787791,928507410,620382696,446955151,139665212,882526402,494793004,107171423,753993075,467588754,207595897,269813018,941027990,856873596,717085190,245280646,792026805,548741735,523767341,637697735,261200153,89666563,344573088,15832984,558492246,825051585,923222974,826620400,558080789,657328927,991078225,706029275,738905108,401212366,980043233,895405022,597894231,636951913,947342478,786075225,395095090,188433847,121279219,860403973,396099425,240442489,521535558,280382318,58023116,735594008,8696133,477645338,223630480,816606673,680021043,362424474,181667447,504295826,332167472,766361494,992840497,417671938,376941230,11880047,275790726,106186450,150546053,966438917,431896075,158021876,734833661,328332504,632143386,962477966,638741189,728804571,753715698,20536106,45105841,271673172,982138522,604809222,199722980,211807634,478008419,194715230,246865373,316443541,869035744,202922168,245262975,136244583,650969410,566222746,55188168,495968583,571946805,188658038,353720239,830419870,669127165,86710835,810103736,630008035,764354348,209246227,277861984,725469211,151404581,894191013,775554083,634671016,170299187,471849450,575347258,505276194,636730506,40086858,386228700,789875034,998219457,359035788,843760715,864829665,794240359,241486050,48334220,583177582,714653706,617669563,132782021,779225352,333301287,520569296,508276228,689073648,573645847,200419842,911561316,310562870,204959007,879280837,762843188,103128368,133300147,648946778,287218789,662474952,587555465,105622721,648151526,517033362,729251452,850555187,708613432,874408867,345608416,690718720,10813958,42384375,882264058,825490058,252850511,652942840,202604098,277615259,862885671,582470925,190843016,534488148,187675153,911660635,377262012,642854978,359397276,712333871,580131409,841639861,925383257,213683380,25291651,974815450,32032244,119030165,443676106,555727293,170519648,171131074,839941962,789829593,140975543,845347712,303299112,530420097,857005350,249174130,224087061,311280308,404814306,567648772,766512373,470895965,294358155,625218604,89534510,513216330,78173719,22818060,254922573,292417477,415060121,208989124,960117615,570018845,237661008,442774488,871349246,161574942,548661451,313471555,448096394,587422360,987939533,254478574,113844945,268886375,927289435,664834607,983476167,390569280,363763327,935767957,159015901,508613041,134148582,127417680,484767855,825835285,43847241,972918293,151969014,768480291,729490470,76727400,384998943,648970509,764966281,391326774,585299643,661473977,530021579,368308424,81083443,981417794,185781362,169555925,934957641,56005264,296483160,853982963,489694611,73207251,20297311,431253211,168162850,36271383,689526671,397669110,705876730,785504919,764896820,936514026,350141918,784778738,682324919,140913543,862125900,723248565,369074340,146936534,226913694,277886748,856792647,13654547,141461269,255233971,979535193,747662027,452683681,338311679,399620140,306913085,817524367,333578440,943193170,387930488,964713035,554372227,524201507,267870305,698863503,695139108,399857384,830659092,479624682,594238820,768224890,956955770,940576967,920740072,282055556,621677930,847367415,619094041,432519599,192780811,912052381,263304046,114280963,307107320,956809356,118706101,836710721,356893069,427113038,55360495,892694364,443807400,568616581,130165565,732273554,778059496,95936679,629634134,383940143,474733431,271200931,253893765,65679204,670721645,268831988,225698685,424701963,654858732,405695790,894299102,797306377,464723449,647679843,730366154,956550665,898568348,313188681,661403769,346715295,358990430,868898456,719464962,978551995,772931269,255694712,379904456,393101377,130818973,810783770,78951115,608848341,941552927,523163696,581658405,188869913,161971620,114600913,300038465,126906968,572973411,118017645,806069307,430432761,310699012,989119052,282768145,557792692,611036992,427168405,84497995,529589599,967936672,416953197,549641787,787274930,514952744,646568513,39329263,765390776,831388678,299074396,102522509,886062498,598990751,553048069,305737423,388746841,13007805,3445560,568306294,109543305,847740132,746222360,454654676,748993028,222910140,861308982,390243513,692742883,789475199,153430402,299806798,913070840,881332402,245792511,618823409,1817990,897836424,726794141,700802042,472214481,97004031,479899815,573979309,752576644,374801082,599964908,894966385,178103304,12240556,393873628,855241924,305678131,971858774,281586141,87362107,41844894,175133514,276243521,997376957,260427125,439339251,64661516,362212695,186181824,423316311,267640938,299252572,810040987,857956827,758991665,207700847,399398818,747579039,814755712,298373935,307448236,42074518,982127624,538863790,528558929,96501138,813255509,611769398,710541518,408153968,675346745,970094012,791931126,811516976,618049736,264048084,209805699,909045292,645349311,416989597,590393407,320547207,342653696,860169617,856611053,475149267,124801433,547187333,466598598,266454901,554467907,868909135,199244107,548833449,20952517,234169026,117025205,804238552,205574540,590283297,822322644,866010856,477388420,935768507,424373916,951967787,344871828,133969287,937034425,309380768,666909962,726492795,996576193,883938945,869749688,313581344,65216237,88860786,208895640,888760811,854567609,328142793,121852766,928690075,135269006,333105486,502240551,573712984,397698082,935117672,718828733,440474396,335628894,184935718,788258676,646732201,68099895,167036421,362572358,787671392,666366534,193503119,74429287,132805884,796935846,124574194,926012440,147265585,722608579,526866610,452261307,990444071,4595579,147427028,774597449,678783012,568563934,383628463,68242206,163493293,352851801,123192034,529859554,14733470,565063217,178575398,580871309,135817500,313966456,647215844,118781836,106243172,796669460,48496927,772979683,715961917,546863206,601711799,644312478,629259662,738295002,692301787,149995411,864799423,284186171,246177326,268779154,86400350,518698490,321709079,946212693,800553099,865864136,244789848,386206318,851633075,713794602,131117952,280474884,243820970,820033654,399700655,825581574,443639603,774376660,362476217,552383080,436759518,538430048,965968656,150434699,563163603,352073025,840124972,152029247,902082055,770264937,747653807,934664232,541451013,807031739,854866728,503502641,283479207,297947602,488469464,205196166,381583984,108455782,570592132,363674728,134077711,356931610,887112858,273780969,443297964,650953636,402662299,894089640,71844431,33030748,208583995,597099208,671156881,875032178,998244352,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; int factorial998(ll n) { constexpr int mod = 998244353; if (n >= mod) return 0; auto [q, r] = divmod<int>(n, 1 << 20); ll x = factorial998table[q]; int s = q << 20; FOR(i, r) x = x * (s + i + 1) % mod; return x; } #line 10 "main.cpp" using mint = modint998; void solve() { LL(N, K); vc<mint> F(K + 10); FOR(d, 1, K + 10) { F[d] += mint(N * N - N) * mint(d).pow(K); F[d] -= mint(N - 1) * mint(d).pow(K + 1); } F = cumsum<mint>(F); mint ans = lagrange_interpolate_iota<mint>(F, N); mint ANS = mint(2) * factorial998(N - 2) * ans; print(ANS); } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }