結果
問題 | No.2744 Power! or +1 |
ユーザー |
|
提出日時 | 2024-08-18 14:02:12 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,881 bytes |
コンパイル時間 | 4,662 ms |
コンパイル使用メモリ | 245,668 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-08-18 14:02:19 |
合計ジャッジ時間 | 5,929 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 5 WA * 4 |
ソースコード
#include <bits/stdc++.h>#include <atcoder/all>typedef long long int ll;using namespace std;typedef pair<ll, ll> P;using namespace atcoder;template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>;#define USE998244353#ifdef USE998244353const ll MOD = 998244353;using mint = modint998244353;#elseconst ll MOD = 1000000007;using mint = modint1000000007;#endif#pragma region //使いがちconst int MAX = 2000001;long long fac[MAX], finv[MAX], inv[MAX];void COMinit() {fac[0] = fac[1] = 1;finv[0] = finv[1] = 1;inv[1] = 1;for (int i = 2; i < MAX; i++){fac[i] = fac[i - 1] * i % MOD;inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;finv[i] = finv[i - 1] * inv[i] % MOD;}}long long COM(int n, int k){if (n < k) return 0;if (n < 0 || k < 0) return 0;return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;}ll gcd(ll x, ll y) {if (y == 0) return x;else if (y > x) {return gcd (y, x);}else return gcd(x % y, y);}ll lcm(ll x, ll y) {return x / gcd(x, y) * y;}ll pow_ll(ll x, ll n) {if (n == 0) return 1;if (n % 2) {return pow_ll(x, n - 1) * x;}else {ll tmp = pow_ll(x, n / 2);return tmp * tmp;}}// floor(a^(1/k))ll floor_root(ll a, ll k) {assert(a >= 0);assert(k >= 1);if (a == 0) return 0;if (k == 1) return a;// 大体の値ll x = (ll)pow(a, 1.0 / k);// 増やすwhile ((pow_ll(x + 1, k)) <= a) {x++;}// 減らすwhile ((pow_ll(x, k)) > a) {x--;}return x;}ll keta(ll num, ll arity) {ll ret = 0;while (num) {num /= arity;ret++;}return ret;}// k進数で見た時のi桁目の数を返す (一番下は0桁目)ll keta_num(ll num, ll i, ll k) {return (num / pow_ll(k, i)) % k;}ll ceil(ll n, ll m) {// n > 0, m > 0ll ret = n / m;if (n % m) ret++;return ret;}void compress(vector<ll>& v) {// [3 5 5 6 1 1 10 1] -> [1 2 2 3 0 0 4 0]vector<ll> u = v;sort(u.begin(), u.end());u.erase(unique(u.begin(),u.end()),u.end());map<ll, ll> mp;for (int i = 0; i < u.size(); i++) {mp[u[i]] = i;}for (int i = 0; i < v.size(); i++) {v[i] = mp[v[i]];}}vector<pair<ll, ll> > prime_factorize(ll N) {vector<pair<ll, ll> > res;for (ll a = 2; a * a <= N; ++a) {if (N % a != 0) continue;ll ex = 0; // 指数// 割れる限り割り続けるwhile (N % a == 0) {++ex;N /= a;}// その結果を pushres.push_back({a, ex});}// 最後に残った数についてif (N != 1) res.push_back({N, 1});return res;}#pragma endregion// xを何乗したらnの倍数になるか(divはnの素因数分解)ll calc(vector<P>& div, ll x) {ll ans = 0;for (auto pa : div) {ll p = pa.first;ll a = pa.second;ll cnt = 0;while (x % p == 0) {x /= p;cnt++;}if (cnt == 0) return -1;ans = max(ans, ceil(a, cnt));}return ans;}// k!がnの倍数になる最小のkを求めるll get_num(ll n) {ll x = n;for (ll i = 1; i <= n; i++) {x /= gcd(x, i);if (x == 1) return i;}return 0;}// x^k <= nを満たす最大のkを求めるll get_pow(ll x, ll n) {if (x == 1) return 1e18;ll k = 1;ll cur = x;while (cur <= n / k) {k++;cur *= x;}return k;}int main() {ll n, a, b, c;cin >> n >> a >> b >> c;ll INF = 1e18;vector<ll> dis(n + 1, INF);dis[1] = 0;auto v = prime_factorize(n);ll bound = get_num(n);cerr << bound << endl;for (ll i = 1; i < n; i++) {// 操作1dis[i + 1] = min(dis[i + 1], dis[i] + a);// 操作2ll max_k = min(get_pow(INF, b), get_pow(n, i));for (ll k = 2; k <= max_k; k++) {dis[pow_ll(i, k)] = min(dis[pow_ll(i, k)], dis[i] + pow_ll(b, k));}// Nの倍数になる場合もOKll k_reach = calc(v, i);if (k_reach != -1) {if (k_reach <= get_pow(INF, b)) {dis[n] = min(dis[n], dis[i] + k_reach * b);}}// 操作3ll cur = 1;for (ll j = 1; j <= i; j++) {cur *= j;if (cur > n) break;}if (cur <= n) {dis[cur] = min(dis[cur], dis[i] + c);}else {// 怪しいdis[n] = min(dis[n], dis[i] + 2 * c);}// Nの倍数になる場合if (i >= bound) {dis[n] = min(dis[n], dis[i] + c);}}cout << dis[n] << endl;return 0;}