結果
問題 | No.2857 Div Array |
ユーザー | 👑 amentorimaru |
提出日時 | 2024-08-25 15:34:50 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,166 bytes |
コンパイル時間 | 4,585 ms |
コンパイル使用メモリ | 251,344 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-08-25 15:34:56 |
合計ジャッジ時間 | 5,554 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | WA | - |
testcase_08 | AC | 1 ms
6,940 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
6,940 KB |
testcase_25 | AC | 2 ms
6,940 KB |
testcase_26 | AC | 2 ms
6,940 KB |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | AC | 1 ms
6,944 KB |
testcase_29 | AC | 1 ms
6,940 KB |
ソースコード
#define ATCODER #define _USE_MATH_DEFINES #include <stdio.h> #include <iostream> #include <fstream> #include <algorithm> #include <vector> #include <string> #include <cassert> #include <numeric> #include <unordered_map> #include <unordered_set> #include <queue> #include <math.h> #include <climits> #include <set> #include <map> #include <list> #include <random> #include <iterator> #include <bitset> #include <chrono> #include <type_traits> using namespace std; using ll = long long; using ld = long double; using pll = pair<ll, ll>; using pdd = pair<ld, ld>; #define FOR(i, a, b) for (ll i = (a); i < (b); i++) #define REP(i, n) for (ll i = 0; i < (n); i++) #define ROF(i, a, b) for (ll i = (b - 1); i >= (a); i--) #define PER(i, n) for (ll i = n - 1; i >= 0; i--) #define VL vector<ll> #define VVL vector<vector<ll>> #define VP vector<pair<ll, ll>> #define LPQ(T) priority_queue<T, vector<T>, greater<T>> #define all(i) begin(i), end(i) #define SORT(i) sort(all(i)) #define EXISTBIT(x, i) (((x >> i) & 1) != 0) #define CHMAX(n, v) n = n < v ? v : n #define CHMIN(n, v) n = n > v ? v : n #define MP(a, b) make_pair(a, b) #define DET2(x1, y1, x2, y2) (x1) * (y2) - (x2) * (y1) #define DET3(x1, y1, z1, x2, y2, z2, x3, y3, z3) (x1) * (y2) * (z3) + (x2) * (y3) * (z1) + (x3) * (y1) * (z2) - (z1) * (y2) * (x3) - (z2) * (y3) * (x1) - (z3) * (y1) * (x2) #define INC(a) \ for (auto &v : a) \ v++; #define DEC(a) \ for (auto &v : a) \ v--; #define SQU(x) (x) * (x) #ifdef ATCODER #include <atcoder/all> using namespace atcoder; using mint = modint1000000007; using mint2 = modint998244353; #endif template <typename T = ll> vector<T> read(size_t n) { vector<T> ts(n); for (size_t i = 0; i < n; i++) cin >> ts[i]; return ts; } template <typename TV, const ll N> void read_tuple_impl(TV &) {} template <typename TV, const ll N, typename Head, typename... Tail> void read_tuple_impl(TV &ts) { get<N>(ts).emplace_back(*(istream_iterator<Head>(cin))); read_tuple_impl<TV, N + 1, Tail...>(ts); } template <typename... Ts> decltype(auto) read_tuple(size_t n) { tuple<vector<Ts>...> ts; for (size_t i = 0; i < n; i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts); return ts; } using val = mint; using val2 = mint2; using func = ll; val op(val a, val b) { return a*b; } val e() { return 1; } val2 op2(val2 a, val2 b) { return a*b; } val2 e2() { return 1; } val mp(func f, val a) { return a + f; } func comp(func f, func g) { return f + g; } func id() { return 0; } ll di[4] = {1, 0, -1, 0}; ll dj[4] = {0, 1, 0, -1}; ll si[4] = {0, 3, 3, 0}; ll sj[4] = {0, 0, 3, 3}; // ll di[4] = { -1,-1,1,1 }; // ll dj[4] = { -1,1,-1,1 }; ll di8[8] = {0, -1, -1, -1, 0, 1, 1, 1}; ll dj8[8] = {-1, -1, 0, 1, 1, 1, 0, -1}; template<typename T = ll> class Matrix { public: Matrix(ll l, ll c = 1) { low = l; column = c; var.resize(l); for (ll i = 0; i < l; i++) { var[i].assign(c, T(0)); } } T& operator()(int i, int j = 0) { return var[i][j]; } Matrix<T> operator+=(Matrix<T> m) { for (ll i = 0; i < low; i++) { for (ll j = 0; j < column; j++) { var[i][j] += m(i, j); } } return *this; } Matrix<T> operator -() { for (ll i = 0; i < low; i++) { for (ll j = 0; j < column; j++) { var[i][j] *= T(-1); } } return *this; } Matrix<T> operator-=(Matrix<T> m) { *this += -m; return *this; } Matrix<T> operator*=(T s) { for (ll i = 0; i < low; i++) { for (ll j = 0; j < column; j++) { var[i][j] *= s; } } return *this; } Matrix<T> operator/=(T s) { for (ll i = 0; i < low; i++) { for (ll j = 0; j < column; j++) { var[i][j] /= s; } } return *this; } Matrix<T> operator+(Matrix<T> m) { Matrix<T> ans = *this; return ans += m; } Matrix<T> operator-(Matrix<T> m) { Matrix<T> ans = *this; return ans -= m; } Matrix<T> operator*(T s) { Matrix<T> ans = *this; return ans *= s; } Matrix<T> operator/(T s) { Matrix<T> ans = *this; return ans /= s; } Matrix<T> operator*(Matrix<T> m) { Matrix<T> ans(low, m.column); for (ll i = 0; i < low; i++) { for (ll j = 0; j < m.column; j++) { for (ll k = 0; k < m.low; k++) { ans.var[i][j] += ((var[i][k]) * (m(k, j))); } } } return ans; } Matrix<T> Gaussian() { auto ans = *this; vector<ll> f(column, -1); for (ll j = 0; j < column; j++) { for (ll i = 0; i < low; i++) { if (ans.var[i][j] == 0) continue; if (f[j] == -1) { bool ok = true; for (ll k = 0; k < j; k++) { ok = ok && i != f[k]; } if (ok) { f[j] = i; break; } } } if (f[j] == -1) { continue; } T rev = 1 / ans(f[j], j); for (ll i = 0; i < low; i++) { if (ans.var[i][j] == 0)continue; if (i == f[j])continue; T mul = ans.var[i][j] * rev; for (ll k = j; k < column; k++) { ans.var[i][k] -= ans.var[f[j]][k] * mul; } } } return ans; } T Determinant() { auto g = Gaussian(); T ans = 1; for (ll i = 0; i < low; i++) { ans *= g(i, i); } return ans; } Matrix<T> SubMatrix(ll lowS, ll lowC, ll colS, ll colC) { Matrix<T> ans(lowC, colC); for (ll i = 0; i < lowC; i++) { for (ll j = 0; j < colC; j++) { ans(i, j) = var[lowS + i][colS + j]; } } return ans; } Matrix<T> Inverse() { Matrix<T> ex(low, column * 2); for (ll i = 0; i < low; i++) { ex(i, column + i) = T(1); for (ll j = 0; j < column; j++) { ex(i, j) = var[i][j]; } } auto g = ex.Gaussian(); auto s = g.SubMatrix(0, low, column, column); for (ll i = 0; i < low; i++) { if (g.var[i][i] == 0) { return Matrix<T>(0, 0); } T inv = 1 / g.var[i][i]; for (ll j = 0; j < column; j++) { s(i, j) *= inv; } } return s; } vector<vector<T>> var; ll low; ll column; }; template<typename T> static Matrix<T> operator*(const T& t, const Matrix<T>& m) { return m * t; } template<typename T> T Power(T var, ll p) { if (p == 1) return var; T ans = Power(var * var, p >> 1); if (p & 1) ans = ans * var;; return ans; } void solve() { ll n,m,k; cin>>n>>m>>k; map<ll,ll> mp; REP(i,m){ mp[m/(i+1)]++; } VL zat; unordered_map<ll,ll> rz; ll c=0; for(auto& [key,v]:mp){ rz[key]=zat.size(); zat.push_back(key); c++; } Matrix<mint2> mf(c,1),mat(c,c); for(auto& [key,v]:mp){ mf.var[rz[key]][0] = v; } REP(i,c){ REP(j,c){ ll v1=zat[i]; ll v2=zat[j]; if(abs(v1-v2)<=k){ mat.var[i][j]=mp[v2]; } } } if(n==1){ cout<<m<<endl; return; } auto mpow=Power(mat,n-1); auto ans=mpow*mf; mint2 ansum=0; REP(i,c){ ansum+=ans.var[i][0]; } cout<<ansum.val()<<endl; return; } int main() { ll t = 1; //cin >> t; while (t--) { solve(); } return 0; }