結果
問題 | No.2857 Div Array |
ユーザー |
|
提出日時 | 2024-08-25 15:41:30 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,413 bytes |
コンパイル時間 | 432 ms |
コンパイル使用メモリ | 82,400 KB |
実行使用メモリ | 103,624 KB |
最終ジャッジ日時 | 2024-08-25 15:41:37 |
合計ジャッジ時間 | 6,303 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 11 TLE * 1 -- * 18 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.pyimport mathfrom bisect import bisect_left, bisect_rightfrom typing import Generic, Iterable, Iterator, TypeVar, Union, ListT = TypeVar('T')class SortedSet(Generic[T]):BUCKET_RATIO = 50REBUILD_RATIO = 170def _build(self, a=None) -> None:"Evenly divide `a` into buckets."if a is None: a = list(self)size = self.size = len(a)bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]def __init__(self, a: Iterable[T] = []) -> None:"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"a = list(a)if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):a = sorted(set(a))self._build(a)def __iter__(self) -> Iterator[T]:for i in self.a:for j in i: yield jdef __reversed__(self) -> Iterator[T]:for i in reversed(self.a):for j in reversed(i): yield jdef __len__(self) -> int:return self.sizedef __repr__(self) -> str:return "SortedSet" + str(self.a)def __str__(self) -> str:s = str(list(self))return "{" + s[1 : len(s) - 1] + "}"def _find_bucket(self, x: T) -> List[T]:"Find the bucket which should contain x. self must not be empty."for a in self.a:if x <= a[-1]: return areturn adef __contains__(self, x: T) -> bool:if self.size == 0: return Falsea = self._find_bucket(x)i = bisect_left(a, x)return i != len(a) and a[i] == xdef add(self, x: T) -> bool:"Add an element and return True if added. / O(√N)"if self.size == 0:self.a = [[x]]self.size = 1return Truea = self._find_bucket(x)i = bisect_left(a, x)if i != len(a) and a[i] == x: return Falsea.insert(i, x)self.size += 1if len(a) > len(self.a) * self.REBUILD_RATIO:self._build()return Truedef discard(self, x: T) -> bool:"Remove an element and return True if removed. / O(√N)"if self.size == 0: return Falsea = self._find_bucket(x)i = bisect_left(a, x)if i == len(a) or a[i] != x: return Falsea.pop(i)self.size -= 1if len(a) == 0: self._build()return Truedef lt(self, x: T) -> Union[T, None]:"Find the largest element < x, or None if it doesn't exist."for a in reversed(self.a):if a[0] < x:return a[bisect_left(a, x) - 1]def le(self, x: T) -> Union[T, None]:"Find the largest element <= x, or None if it doesn't exist."for a in reversed(self.a):if a[0] <= x:return a[bisect_right(a, x) - 1]def gt(self, x: T) -> Union[T, None]:"Find the smallest element > x, or None if it doesn't exist."for a in self.a:if a[-1] > x:return a[bisect_right(a, x)]def ge(self, x: T) -> Union[T, None]:"Find the smallest element >= x, or None if it doesn't exist."for a in self.a:if a[-1] >= x:return a[bisect_left(a, x)]def __getitem__(self, x: int) -> T:"Return the x-th element, or IndexError if it doesn't exist."if x < 0: x += self.sizeif x < 0: raise IndexErrorfor a in self.a:if x < len(a): return a[x]x -= len(a)raise IndexErrordef index(self, x: T) -> int:"Count the number of elements < x."ans = 0for a in self.a:if a[-1] >= x:return ans + bisect_left(a, x)ans += len(a)return ansdef index_right(self, x: T) -> int:"Count the number of elements <= x."ans = 0for a in self.a:if a[-1] > x:return ans + bisect_right(a, x)ans += len(a)return ans# https://tech.aru-zakki.com/python-pow-matrix/def matmul(A, B, mod):N = len(A)K = len(A[0])M = len(B[0])c = [[0 for _ in range(M)] for _ in range(N)]for i in range(N) :for j in range(K) :for k in range(M) :c[i][k] += A[i][j] * B[j][k]c[i][k] %= modreturn cdef pow_matrix(A, p, mod):n = len(A)c = [[1 if i == j else 0 for i in range(n)] for j in range(n)]while p > 0 :if p%2 == 1 :c = matmul(c, A, mod)A = matmul(A, A, mod)p //= 2return cimport sysinput = sys.stdin.readlineMOD = 998244353N, M, K = map(int, input().split())A = [[1 if i==j else 0 for j in range(M)] for i in range(M)]B = [[0 for _ in range(M)] for _ in range(M)]dp = [0 for _ in range(M)]for i in range(M):dp[i] = (M//(i+1), -i)S = SortedSet(dp)for i in range(M):tmp = M//(i+1)_, r = S.ge((tmp-K, -M))r = -r_, l = S.le((tmp+K, M))l = -lfor j in range(l, r+1):B[i][j] = 1C = pow_matrix(B, N-1, MOD)D = matmul(A, C, MOD)ans = 0for i in range(M):for j in range(M):ans += D[i][j]ans %= MODprint(ans)