結果

問題 No.2857 Div Array
ユーザー miya145592miya145592
提出日時 2024-08-25 15:41:30
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 5,413 bytes
コンパイル時間 432 ms
コンパイル使用メモリ 82,400 KB
実行使用メモリ 103,624 KB
最終ジャッジ日時 2024-08-25 15:41:37
合計ジャッジ時間 6,303 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 11 TLE * 1 -- * 18
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a=None) -> None:
"Evenly divide `a` into buckets."
if a is None: a = list(self)
size = self.size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _find_bucket(self, x: T) -> List[T]:
"Find the bucket which should contain x. self must not be empty."
for a in self.a:
if x <= a[-1]: return a
return a
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a = self._find_bucket(x)
i = bisect_left(a, x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
if i == len(a) or a[i] != x: return False
a.pop(i)
self.size -= 1
if len(a) == 0: self._build()
return True
def lt(self, x: T) -> Union[T, None]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Union[T, None]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Union[T, None]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Union[T, None]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, x: int) -> T:
"Return the x-th element, or IndexError if it doesn't exist."
if x < 0: x += self.size
if x < 0: raise IndexError
for a in self.a:
if x < len(a): return a[x]
x -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
# https://tech.aru-zakki.com/python-pow-matrix/
def matmul(A, B, mod):
N = len(A)
K = len(A[0])
M = len(B[0])
c = [[0 for _ in range(M)] for _ in range(N)]
for i in range(N) :
for j in range(K) :
for k in range(M) :
c[i][k] += A[i][j] * B[j][k]
c[i][k] %= mod
return c
def pow_matrix(A, p, mod):
n = len(A)
c = [[1 if i == j else 0 for i in range(n)] for j in range(n)]
while p > 0 :
if p%2 == 1 :
c = matmul(c, A, mod)
A = matmul(A, A, mod)
p //= 2
return c
import sys
input = sys.stdin.readline
MOD = 998244353
N, M, K = map(int, input().split())
A = [[1 if i==j else 0 for j in range(M)] for i in range(M)]
B = [[0 for _ in range(M)] for _ in range(M)]
dp = [0 for _ in range(M)]
for i in range(M):
dp[i] = (M//(i+1), -i)
S = SortedSet(dp)
for i in range(M):
tmp = M//(i+1)
_, r = S.ge((tmp-K, -M))
r = -r
_, l = S.le((tmp+K, M))
l = -l
for j in range(l, r+1):
B[i][j] = 1
C = pow_matrix(B, N-1, MOD)
D = matmul(A, C, MOD)
ans = 0
for i in range(M):
for j in range(M):
ans += D[i][j]
ans %= MOD
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0