結果

問題 No.2857 Div Array
ユーザー miya145592miya145592
提出日時 2024-08-25 15:41:30
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 5,413 bytes
コンパイル時間 432 ms
コンパイル使用メモリ 82,400 KB
実行使用メモリ 103,624 KB
最終ジャッジ日時 2024-08-25 15:41:37
合計ジャッジ時間 6,303 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 62 ms
77,092 KB
testcase_01 AC 68 ms
72,720 KB
testcase_02 AC 72 ms
74,968 KB
testcase_03 AC 72 ms
74,924 KB
testcase_04 AC 65 ms
73,168 KB
testcase_05 AC 67 ms
73,256 KB
testcase_06 AC 66 ms
72,152 KB
testcase_07 AC 99 ms
74,412 KB
testcase_08 AC 79 ms
74,152 KB
testcase_09 AC 103 ms
78,696 KB
testcase_10 AC 1,175 ms
79,352 KB
testcase_11 TLE -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')

class SortedSet(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a=None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = self.size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
            a = sorted(set(a))
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _find_bucket(self, x: T) -> List[T]:
        "Find the bucket which should contain x. self must not be empty."
        for a in self.a:
            if x <= a[-1]: return a
        return a

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        return i != len(a) and a[i] == x

    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i != len(a) and a[i] == x: return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
        return True

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i == len(a) or a[i] != x: return False
        a.pop(i)
        self.size -= 1
        if len(a) == 0: self._build()
        return True
    
    def lt(self, x: T) -> Union[T, None]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Union[T, None]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Union[T, None]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Union[T, None]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, x: int) -> T:
        "Return the x-th element, or IndexError if it doesn't exist."
        if x < 0: x += self.size
        if x < 0: raise IndexError
        for a in self.a:
            if x < len(a): return a[x]
            x -= len(a)
        raise IndexError
    
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

# https://tech.aru-zakki.com/python-pow-matrix/
def matmul(A, B, mod):
    N = len(A)
    K = len(A[0])
    M = len(B[0])

    c = [[0 for _ in range(M)] for _ in range(N)]

    for i in range(N) :
        for j in range(K) :
            for k in range(M) :
                c[i][k] += A[i][j] * B[j][k] 
                c[i][k] %= mod
    return c

def pow_matrix(A, p, mod):
    n = len(A)
    c = [[1 if i == j else 0 for i in range(n)] for j in range(n)]
    while p > 0 :
        if p%2 == 1 :
            c = matmul(c, A, mod)
        A = matmul(A, A, mod)
        p //= 2
    return c


import sys
input = sys.stdin.readline
MOD = 998244353
N, M, K = map(int, input().split())
A = [[1 if i==j else 0 for j in range(M)] for i in range(M)]
B = [[0 for _ in range(M)] for _ in range(M)]
dp = [0 for _ in range(M)]
for i in range(M):
    dp[i] = (M//(i+1), -i)
S = SortedSet(dp)
for i in range(M):
    tmp = M//(i+1)
    _, r = S.ge((tmp-K, -M))
    r = -r
    _, l = S.le((tmp+K, M))
    l = -l
    for j in range(l, r+1):
        B[i][j] = 1
C = pow_matrix(B, N-1, MOD)
D = matmul(A, C, MOD)
ans = 0
for i in range(M):
    for j in range(M):
        ans += D[i][j]
        ans %= MOD
print(ans)
0