結果

問題 No.2857 Div Array
ユーザー aogeraaogera
提出日時 2024-08-25 17:22:50
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 28 ms / 2,000 ms
コード長 5,408 bytes
コンパイル時間 8,316 ms
コンパイル使用メモリ 352,280 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-08-25 17:22:59
合計ジャッジ時間 9,280 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 21 ms
6,940 KB
testcase_12 AC 7 ms
6,940 KB
testcase_13 AC 4 ms
6,940 KB
testcase_14 AC 21 ms
6,940 KB
testcase_15 AC 4 ms
6,940 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 18 ms
6,940 KB
testcase_18 AC 16 ms
6,940 KB
testcase_19 AC 10 ms
6,944 KB
testcase_20 AC 28 ms
6,940 KB
testcase_21 AC 26 ms
6,940 KB
testcase_22 AC 27 ms
6,944 KB
testcase_23 AC 26 ms
6,940 KB
testcase_24 AC 2 ms
6,940 KB
testcase_25 AC 2 ms
6,944 KB
testcase_26 AC 2 ms
6,944 KB
testcase_27 AC 2 ms
6,944 KB
testcase_28 AC 2 ms
6,944 KB
testcase_29 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#include <atcoder/all>
using ull = unsigned long long;
using namespace std;
using namespace atcoder;
using vst = vector<string>;
using ll = long long;
using ld = long double;
using P = pair<ll,ll>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vP = vector<P>;
#define rep(i, n) for (ll i = 0; i < n; i++)
#define repp(i,k,n) for (ll i = k; i < n; i++)
#define per(i,s,e) for(ll i = s; i >= e; i--)
#define all(v) v.begin(),v.end()
#define yesno(a) a ? cout << "Yes" << '\n' : cout << "No" << '\n'
#define YESNO(a) a ? cout << "YES" << '\n' : cout << "NO" << '\n'
#define UNOmap unordered_map
#define UNOset unordered_set
#define chmax(a,b) a=max(a,b)
#define chmin(a,b) a=min(a,b)
#define debug(x) cerr << #x << " = " << x << '\n'

template<class... T>void in(T&... a){(cin >> ... >> a);}
template<class T, class... Ts>void out(const T& a, const Ts&... b){cout << a;((cout << ' ' <<  b), ...);cout << '\n';}
template<class T> void vin2(vector<T> &u,vector<T> &v){for(ll i = 0; i < (ll)v.size(); i++) in(u[i],v[i]);}
template<class T> void vin(vector<T> &v){for(ll i = 0; i < (ll)v.size(); i++)in(v[i]);}
template<class T> void vout(vector<T> &v){for(ll i = 0; i < (ll)v.size(); i++) cout << v[i] << ' ';cout << "\n";}

ll INF = 1152921504606846976;ll MOD =998244353; ll MOD1 =1000000007;
/* INF = 1LL << 60 */

#define sl(...) ll __VA_ARGS__; in(__VA_ARGS__)
 
using mint = modint998244353;
using mint1 = modint1000000007;
using mintn = modint;
using vm = vector<mint>;
using vvm = vector<vm>;

vl dx = {0,0,1,-1}, dy = {1,-1,0,0};
//----------------------------------------------

template< class T >
struct Matrix {
  vector< vector< T > > A;

  Matrix() {}

  Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}

  Matrix(size_t n) : A(n, vector< T >(n, 0)) {};

  size_t height() const {
    return (A.size());
  }

  size_t width() const {
    return (A[0].size());
  }

  inline const vector< T > &operator[](int k) const {
    return (A.at(k));
  }

  inline vector< T > &operator[](int k) {
    return (A.at(k));
  }

  static Matrix I(size_t n) {
    Matrix mat(n);
    for(int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    size_t n = height(), m = B.width(), p = width();
    assert(p == B.height());
    vector< vector< T > > C(n, vector< T >(m, 0));
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        for(int k = 0; k < p; k++)
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(height());
    while(k > 0) {
      if(k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const {
    return (Matrix(*this) += B);
  }

  Matrix operator-(const Matrix &B) const {
    return (Matrix(*this) -= B);
  }

  Matrix operator*(const Matrix &B) const {
    return (Matrix(*this) *= B);
  }

  Matrix operator^(const long long k) const {
    return (Matrix(*this) ^= k);
  }

  friend ostream &operator<<(ostream &os, Matrix &p) {
    size_t n = p.height(), m = p.width();
    for(int i = 0; i < n; i++) {
      os << "[";
      for(int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }


  T determinant() {
    Matrix B(*this);
    assert(width() == height());
    T ret = 1;
    for(int i = 0; i < width(); i++) {
      int idx = -1;
      for(int j = i; j < width(); j++) {
        if(B[j][i] != 0) idx = j;
      }
      if(idx == -1) return (0);
      if(i != idx) {
        ret *= -1;
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T vv = B[i][i];
      for(int j = 0; j < width(); j++) {
        B[i][j] /= vv;
      }
      for(int j = i + 1; j < width(); j++) {
        T a = B[j][i];
        for(int k = 0; k < width(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};


int main(){
  ios::sync_with_stdio(false);cin.tie(nullptr);cout<<fixed<<setprecision(15);
//==============================================

  ll N, M, K;
  in(N,M,K);
  
  vl vec;
  vl mp(M+1);
  repp(i,1,M+1){
    if(i ==1){
      vec.push_back(M);
      mp[M/i]=vec.size();
      continue;
    }
    if(M/i != vec.back()){
      vec.push_back(M/i);
      mp[M/i]=vec.size();
    }
    
  }
  

  
  Matrix<mint> Mt(vec.size(),vec.size());
 
  
  Matrix<mint> Nt(vec.size(),1);
  repp(i,1,M+1){
    if(mp[M/i]==0)continue ;
    Nt[mp[M/i]-1][0]++;
  }
  rep(i,vec.size()) rep(j,vec.size()){
    Mt[i][j] =0;
    if(abs(vec[j]-vec[i]) <= K) Mt[i][j]=Nt[i][0];
    
  }
  
  
  Mt ^=N-1;
 
  
  Mt *= Nt;
  mint ans = 0;
  rep(i,vec.size()){
    //out(Mt[i][0].val());
    ans += Mt[i][0];
  }
 
  out(ans.val());
}
0