結果
問題 | No.1409 Simple Math in yukicoder |
ユーザー | eQe |
提出日時 | 2024-09-03 04:07:19 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 40 ms / 2,000 ms |
コード長 | 11,253 bytes |
コンパイル時間 | 6,194 ms |
コンパイル使用メモリ | 330,528 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-03 04:07:56 |
合計ジャッジ時間 | 34,049 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 6 ms
6,944 KB |
testcase_08 | AC | 15 ms
6,940 KB |
testcase_09 | AC | 6 ms
6,944 KB |
testcase_10 | AC | 12 ms
6,944 KB |
testcase_11 | AC | 15 ms
6,944 KB |
testcase_12 | AC | 13 ms
6,940 KB |
testcase_13 | AC | 6 ms
6,944 KB |
testcase_14 | AC | 5 ms
6,944 KB |
testcase_15 | AC | 6 ms
6,944 KB |
testcase_16 | AC | 6 ms
6,944 KB |
testcase_17 | AC | 20 ms
6,940 KB |
testcase_18 | AC | 10 ms
6,944 KB |
testcase_19 | AC | 12 ms
6,940 KB |
testcase_20 | AC | 9 ms
6,944 KB |
testcase_21 | AC | 8 ms
6,940 KB |
testcase_22 | AC | 13 ms
6,940 KB |
testcase_23 | AC | 4 ms
6,940 KB |
testcase_24 | AC | 4 ms
6,944 KB |
testcase_25 | AC | 12 ms
6,944 KB |
testcase_26 | AC | 13 ms
6,940 KB |
testcase_27 | AC | 20 ms
6,940 KB |
testcase_28 | AC | 21 ms
6,944 KB |
testcase_29 | AC | 20 ms
6,940 KB |
testcase_30 | AC | 21 ms
6,940 KB |
testcase_31 | AC | 21 ms
6,944 KB |
testcase_32 | AC | 21 ms
6,940 KB |
testcase_33 | AC | 22 ms
6,944 KB |
testcase_34 | AC | 20 ms
6,940 KB |
testcase_35 | AC | 21 ms
6,940 KB |
testcase_36 | AC | 21 ms
6,940 KB |
testcase_37 | AC | 37 ms
6,940 KB |
testcase_38 | AC | 37 ms
6,944 KB |
testcase_39 | AC | 37 ms
6,944 KB |
testcase_40 | AC | 38 ms
6,940 KB |
testcase_41 | AC | 37 ms
6,940 KB |
testcase_42 | AC | 37 ms
6,940 KB |
testcase_43 | AC | 37 ms
6,944 KB |
testcase_44 | AC | 37 ms
6,940 KB |
testcase_45 | AC | 37 ms
6,940 KB |
testcase_46 | AC | 37 ms
6,940 KB |
testcase_47 | AC | 37 ms
6,944 KB |
testcase_48 | AC | 36 ms
6,944 KB |
testcase_49 | AC | 37 ms
6,940 KB |
testcase_50 | AC | 36 ms
6,940 KB |
testcase_51 | AC | 37 ms
6,940 KB |
testcase_52 | AC | 37 ms
6,940 KB |
testcase_53 | AC | 37 ms
6,940 KB |
testcase_54 | AC | 37 ms
6,944 KB |
testcase_55 | AC | 38 ms
6,940 KB |
testcase_56 | AC | 38 ms
6,940 KB |
testcase_57 | AC | 39 ms
6,940 KB |
testcase_58 | AC | 40 ms
6,944 KB |
testcase_59 | AC | 40 ms
6,944 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> namespace my{ using namespace atcoder; using ml=modint998244353; auto&operator<<(std::ostream&o,const ml&x){return o<<x.val();} auto&operator>>(std::istream&i,ml&x){long long t;i>>t;x=t;return i;} void main();void solve(); } int main(){my::main();} namespace my{ #define eb emplace_back #define all(a) (a).begin(),(a).end() #define RD(T,...) T __VA_ARGS__;li(__VA_ARGS__) #define LL(...) RD(ll,__VA_ARGS__) #define JO(a,b) a##b #define jo(a,b) JO(a,b) #define FO(n) for(ll jo(i,__LINE__)=n;jo(i,__LINE__)-->0;) #define FOR(i,...) for(auto[i,i##O,i##E]=range(0,__VA_ARGS__);i<i##O;i+=i##E) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define of(i,...) for(auto[i,i##O,i##E]=range(1,__VA_ARGS__);i>=i##O;i-=i##E) #define fe(v,e,...) for(auto&&__VA_OPT__([)e __VA_OPT__(,__VA_ARGS__]):v) #define I template #define J class using namespace std; I<J A,J B>constexpr bool same=is_same_v<A,B>; using is=istream;using os=ostream;using dd=long double;using str=string; using ll=long long;using ull=unsigned long long;using lll=__int128_t;using ulll=__uint128_t; os&operator<<(os&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);} os&operator<<(os&o,const lll&x){return o<<str(x<0,'-')<<ulll(x>0?x:-x);} constexpr dd ee=1e-12; constexpr ll oo=3e18; constexpr ll dx[]{-1,0,1,0,-1,1,1,-1},dy[]{0,-1,0,1,-1,-1,1,1}; constexpr char sp=32,nl=10; auto Yes(bool y){return y?"Yes":"No";} auto No(){return Yes(0);} auto range(bool s,ll a,ll b=oo,ll c=1){if(b==oo)b=a,(s?b:a)=0;return tuple{a-s,b,c};} ll rand(ll l=oo,ll r=oo){static ull a=495;a^=a<<7,a^=a>>9;return r!=oo?a%(r-l)+l:l!=oo?a%l:a;} bool eve(ll x){return~x&1;} lll pw(lll x,lll n,ll m=0){lll r=1;while(n)n&1?r*=x:r,x*=x,m?r%=m,x%=m:r,n>>=1;return r;} I<J T>T sq(T a){return a*a;} I<J T>T zz(T x){return x<0?-x:x;} I<J T>ll len(const T&a){return a.size();} I<J...A>auto min(const A&...a){return min(initializer_list<common_type_t<A...>>{a...});} I<J A,J B=A>struct cp{ A a={};B b={}; cp(){} cp(A a,B b):a(a),b(b){} cp(pair<A,B>p):a(p.first),b(p.second){} bool operator==(const cp&c)const{return a==c.a&&b==c.b;} auto operator<=>(const cp&c)const{return a!=c.a?a<=>c.a:b<=>c.b;} friend is&operator>>(is&i,cp&c){return i>>c.a>>c.b;} friend os&operator<<(os&o,const cp&c){return o<<c.a<<sp<<c.b;} };using cl=cp<ll>; I<J A,J B=A,J C=A>struct tr{ A a={};B b={};C c={}; tr(){} tr(A a,B b,C c):a(a),b(b),c(c){} bool operator==(const tr&t)const{return a==t.a&&b==t.b&&c==t.c;} auto operator<=>(const tr&t)const{return a!=t.a?a<=>t.a:b!=t.b?b<=>t.b:c<=>t.c;} friend is&operator>>(is&i,tr&t){return i>>t.a>>t.b>>t.c;} friend os&operator<<(os&o,const tr&t){return o<<t.a<<sp<<t.b<<sp<<t.c;} };using tl=tr<ll>; I<J T>T&sort(T&a){sort(all(a));return a;} I<J T>decltype(auto)first(T&a){return*begin(a);} I<J T>decltype(auto)last(T&a){return*rbegin(a);} I<J T>auto pop_front(T&a){assert(len(a));auto r=first(a);a.pop_front();return r;} I<J T>auto pop_back(T&a){assert(len(a));auto r=last(a);a.pop_back();return r;} I<J T,size_t n>using array=std::array<T,n>; I<J T,size_t n>os&operator<<(os&o,const array<T,n>&a){fo(i,n)o<<a[i]<<str(i!=n-1,sp);return o;} I<J T,J U=T>using map=std::map<T,U>; I<J T,J U>os&operator<<(os&o,const map<T,U>&m){fe(m,e)o<<e.first<<sp<<e.second<<nl;return o;} I<J T,J U=T>using umap=unordered_map<T,U>; I<J T,J U>os&operator<<(os&o,const umap<T,U>&m){fe(m,e)o<<e.first<<sp<<e.second<<nl;return o;} I<size_t n>using bset=bitset<n>; I<size_t n>os&operator<<(os&o,const bset<n>&b){fo(i,n)o<<b[i];return o;} I<J...A>os&operator<<(os&o,const tuple<A...>&t){apply([&](const auto&...a){ll i=sizeof...(a);(((o<<a<<str(--i>0,sp))),...);},t);return o;} I<J T,J F>struct priority_queue:std::priority_queue<T,vector<T>,F>{ priority_queue(const initializer_list<T>&a={}){fe(a,e)this->emplace(e);} priority_queue(const vector<T>&a){fe(a,e)this->emplace(e);} T front(){return this->top();} void pop_front(){this->pop();} friend os&operator<<(os&o,priority_queue q){while(len(q))o<<my::pop_front(q)<<str(len(q)>0,sp);return o;} }; I<J T>using max_priority_queue=priority_queue<T,less<>>; I<J T>using min_priority_queue=priority_queue<T,greater<>>; I<J V>struct ve; I<J V>constexpr bool isv=0; I<J V>constexpr bool isv<ve<V>> =1; I<J V>constexpr bool isv<vector<V>> =1; I<J V>auto rawv(V){if constexpr(isv<V>)return rawv(V(1)[0]);else return V();} I<J V>struct ve:vector<V>{ using vector<V>::vector; using T=decltype(rawv(V())); I<J U>ve(const vector<U>&v={}){static_assert(isv<V> ==isv<U>);fe(v,e)this->eb(e);} ve&operator+=(const ve&u){auto&v=*this;fo(i,len(v))v[i]+=u[i];return v;} ve&operator-=(const ve&u){auto&v=*this;fo(i,len(v))v[i]-=u[i];return v;} ve&operator^=(const ve&u){fe(u,e)this->eb(e);return*this;} ve operator+(const ve&u)const{return ve(*this)+=u;} ve operator-(const ve&u)const{return ve(*this)-=u;} ve operator^(const ve&u)const{return ve(*this)^=u;} ve&operator+=(const T&x){auto&v=*this;fe(v,e)e+=x;return v;} ve&operator-=(const T&x){auto&v=*this;fe(v,e)e-=x;return v;} ve&operator*=(const T&x){auto&v=*this;fe(v,e)e*=x;return v;} ve operator+(const T&x)const{return ve(*this)+=x;} ve operator-(const T&x)const{return ve(*this)-=x;} ve operator*(const T&x)const{return ve(*this)*=x;} ve&operator++(){return*this+=1;} ve&operator--(){return*this-=1;} ve operator-()const{return ve(*this)*=-1;} I<size_t n>auto&operator+=(const bset<n>&a){fo(i,n)(*this)[i]+=a[i];return*this;} I<size_t n>auto&operator-=(const bset<n>&a){fo(i,n)(*this)[i]-=a[i];return*this;} auto lower_bound(const V&x)const{return std::lower_bound(all(*this),x);} auto upper_bound(const V&x)const{return std::upper_bound(all(*this),x);} I<J F>auto scan(F f)const{cp<T,bool>r;fe(*this,e)if constexpr(!isv<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;return r;} T min()const{return scan([](T&a,const T&b){a>b?a=b:0;;}).a;} ve zeta()const{ve v=*this;if constexpr(isv<V>)fe(v,e)e=e.zeta();fo(i,len(v)-1)v[i+1]+=v[i];return v;} void emplace_front(const V&x={}){this->emplace(this->begin(),x);} void pop_front(){this->erase(this->begin());} friend is&operator>>(is&i,ve&v){fe(v,e)i>>e;return i;} friend os&operator<<(os&o,const ve&v){fe(v,e)o<<e<<str(&e!=&v.back(),isv<V>?nl:sp);return o;} }; I<J T=ll,size_t n,size_t i=0>auto vec(const ll(&s)[n],T x={}){if constexpr(n==i+1)return ve<T>(s[i],x);else{auto X=vec<T,n,i+1>(s,x);return ve<decltype(X)>(s[i],X);}} I<ll n,J...A>void set_size(const ll(&l)[n],A&...a){((a=vec(l,rawv(a))),...);} using u1=ve<ll>;using u2=ve<ve<ll>>; void io(){cin.tie(0)->sync_with_stdio(0);cout<<fixed<<setprecision(15);cerr<<nl;} I<J...A>void li(A&...a){(cin>>...>>a);} I<char c=sp,J...A>void pp(const A&...a){ll i=sizeof...(a);((cout<<a<<str(--i>0,c)),...);cout<<nl;} ll floor_sqrt(ll x){ll r=sqrt(zz(x-ee));while(r+1<=x/(r+1))++r;return r;} I<J T,J U=T>auto rle(const ve<T>&a){ve<cp<T,U>>r;fe(a,e)len(r)&&e==r.back().a?++r.back().b:r.eb(e,1).b;return r;} I<J T,J U=T>auto rce(ve<T>a){return rle<T,U>(sort(a));} ll inv(ll x,ll m){ll a=(x%m+m)%m,b=m,u=1,v=0;while(b)u-=a/b*v,swap(u,v),a-=a/b*b,swap(a,b);return(u%m+m)%m;} I<J F>struct rec:F{rec(F&&f):F(std::forward<F>(f)){}I<J...A>decltype(auto)operator()(A&&...a)const{return F::operator()(*this,std::forward<A>(a)...);}}; ve<ll>prime_enumerate(ll n){ ve<bool>sieve(n/3+1,1); for(ll p=5,d=4,i=1,rn=floor_sqrt(n);p<=rn;p+=d=6-d,i++){ if(!sieve[i])continue; for(ll q=sq(p)/3,r=d*p/3+(d*p%3==2),s=p*2;q<len(sieve);q+=r=s-r)sieve[q]=0; } ve<ll>r{2,3}; for(ll p=5,d=4,i=1;p<=n;p+=d=6-d,i++)if(sieve[i])r.eb(p); while(len(r)&&r.back()>n)r.pop_back(); return r; } struct montgomery64{ using ml=montgomery64; using i64=ll; using u64=ull; using u128=__uint128_t; static inline u64 m=998244353; static inline u64 miv; static inline u64 n2; static void set_mod(u64 m){ assert(m<(1ULL<<63)); assert(m&1); ml::m=m; n2=-u128(m)%m; miv=m; fo(5)miv*=2-m*miv; assert(m*miv==1); } static u64 mod(){ return m; } u64 a; montgomery64(const i64&a=0):a(reduce((u128)(a%(i64)m+m)*n2)){} static u64 reduce(const u128&a){ u128 r=(a+u128(u64(a)*-miv)*m)>>64; return r>=m?r-m:r; } ml&operator+=(const ml&b){if((a+=b.a)>=m)a-=m;return*this;} ml&operator-=(const ml&b){if(i64(a-=b.a)<0)a+=m;return*this;} ml&operator*=(const ml&b){a=reduce(u128(a)*b.a);return*this;} ml&operator/=(const ml&b){*this*=b.inv();return*this;} ml operator+(const ml&b)const{return ml(*this)+=b;} ml operator-(const ml&b)const{return ml(*this)-=b;} ml operator*(const ml&b)const{return ml(*this)*=b;} ml operator/(const ml&b)const{return ml(*this)/=b;} bool operator==(const ml&b)const{return a==b.a;} bool operator!=(const ml&b)const{return a!=b.a;} ml operator-()const{return ml()-ml(*this);} ml pow(u128 n)const{ ml r(1),x(*this); while(n){ if(n&1)r*=x; x*=x; n>>=1; } return r; } ml inv()const{ u64 a=this->a,b=m,u=1,v=0; while(b)u-=a/b*v,swap(u,v),a-=a/b*b,swap(a,b); return u; } u64 val()const{ return reduce(a); } friend is&operator>>(is&i,ml&b){ ll t;i>>t;b=t; return i; } friend os&operator<<(os&o,const ml&b){ return o<<b.val(); } }; template<class mont>bool miller_rabin(ll n,ve<ll>as){ ll t=0,d=n-1; while(eve(d))d>>=1; if(mont::mod()!=n)mont::set_mod(n); mont one=1,minus_one=n-1; fe(as,a){ if(a%n==0)continue; ll t=d; mont y=mont(a).pow(t); while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1; if(y!=minus_one&&eve(t))return 0; } return 1; } bool is_prime(ll n){ if(eve(n))return n==2; if(n<=1)return 0; if(n<4759123141LL)return miller_rabin<montgomery64>(n,{2,7,61}); return miller_rabin<montgomery64>(n,{2,325,9375,28178,450775,9780504,1795265022}); } template<class mont>ll pollard_rho(ll n){ if(eve(n))return 2; if(is_prime(n))return n; if(mont::mod()!=n)mont::set_mod(n); mont R,one=1; auto f=[&](mont x){return x*x+R;}; while(1){ mont x,y,ys,q=one; R=rand(2,n),y=rand(2,n); ll g=1; constexpr ll m=128; for(ll r=1;g==1;r<<=1){ x=y; fo(r)y=f(y); for(ll k=0;g==1&&k<r;k+=m){ ys=y; for(ll i=0;i<m&&i<r-k;++i)q*=x-(y=f(y)); g=std::gcd(q.val(),n); } } if(g==n)do g=std::gcd((x-(ys=f(ys))).val(),n);while(g==1); if(g!=n)return g; } } ve<ll>inner_factorize(ll n){ if(n<=1)return{}; ll d=pollard_rho<montgomery64>(n); if(d==n)return{d}; return inner_factorize(d)^inner_factorize(n/d); } ve<cl>factorize(ll n){ return rce(inner_factorize(n)); } template<class mont>ll primitive_root(ll p){ if(p==2)return 1; ve<ll>primes; fe(factorize(p-1),a,b)primes.eb(a); if(mont::mod()!=p)mont::set_mod(p); while(1){ mont a=rand(1,p); bool f=1; fe(primes,k)if(a.pow((p-1)/k).val()==1)f=0; if(f)return a.val(); } } ve<ll>prime_table(ll n){ ve<bool>r(n+1); fe(prime_enumerate(n),p)r[p]=1; return r; } void main(){io();ll T=1;li(T);fo(T)solve();} void solve(){ LL(v,x); ll p=v*x+1; ll g=primitive_root<montgomery64>(p); g=pw(g,v,p); ve<ll>res(x); fo(i,x)res[i]=pw(g,i,p); pp(sort(res)); }}