結果
問題 | No.1846 Good Binary Matrix |
ユーザー |
👑 ![]() |
提出日時 | 2024-09-06 05:32:51 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 121 ms / 2,000 ms |
コード長 | 21,117 bytes |
コンパイル時間 | 2,466 ms |
コンパイル使用メモリ | 202,896 KB |
最終ジャッジ日時 | 2025-02-24 03:56:13 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 35 |
ソースコード
#line 1 "a.cpp"#include <bits/stdc++.h>using namespace std;using std::cout;using std::cin;using std::endl;using ll=long long;using ld=long double;const ll ILL=2167167167167167167;const int INF=2100000000;#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)#define all(p) p.begin(),p.end()template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;template<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}template<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}template<class T> bool chmin(T &a,T b){if(a>b){a=b;return 1;}else return 0;}template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}bool yneos(bool a,bool upp=0){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;}template<class T> void vec_out(vector<T> &p,int ty=0){if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";}else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}}template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}template<class T> bool inside(T l,T x,T r){return l<=x&&x<r;}#include <cassert>#include <numeric>#include <type_traits>#ifdef _MSC_VER#include <intrin.h>#endif#include <utility>#ifdef _MSC_VER#include <intrin.h>#endifnamespace atcoder {namespace internal {// @param m `1 <= m`// @return x mod mconstexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}// Fast modular multiplication by barrett reduction// Reference: https://en.wikipedia.org/wiki/Barrett_reduction// NOTE: reconsider after Ice Lakestruct barrett {unsigned int _m;unsigned long long im;// @param m `1 <= m`explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}// @return munsigned int umod() const { return _m; }// @param a `0 <= a < m`// @param b `0 <= b < m`// @return `a * b % m`unsigned int mul(unsigned int a, unsigned int b) const {// [1] m = 1// a = b = im = 0, so okay// [2] m >= 2// im = ceil(2^64 / m)// -> im * m = 2^64 + r (0 <= r < m)// let z = a*b = c*m + d (0 <= c, d < m)// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2// ((ab * im) >> 64) == c or c + 1unsigned long long z = a;z *= b;#ifdef _MSC_VERunsigned long long x;_umul128(z, im, &x);#elseunsigned long long x =(unsigned long long)(((unsigned __int128)(z)*im) >> 64);#endifunsigned long long y = x * _m;return (unsigned int)(z - y + (z < y ? _m : 0));}};// @param n `0 <= n`// @param m `1 <= m`// @return `(x ** n) % m`constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}// Reference:// M. Forisek and J. Jancina,// Fast Primality Testing for Integers That Fit into a Machine Word// @param n `0 <= n`constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;constexpr long long bases[3] = {2, 7, 61};for (long long a : bases) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n);// @param b `1 <= b`// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/gconstexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};// Contracts:// [1] s - m0 * a = 0 (mod b)// [2] t - m1 * a = 0 (mod b)// [3] s * |m1| + t * |m0| <= blong long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b// [3]:// (s - t * u) * |m1| + t * |m0 - m1 * u|// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)// = s * |m1| + t * |m0| <= bauto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}// by [3]: |m0| <= b/g// by g != b: |m0| < b/gif (m0 < 0) m0 += b / s;return {s, m0};}// Compile time primitive root// @param m must be prime// @return primitive root (and minimum in now)constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}template <int m> constexpr int primitive_root = primitive_root_constexpr(m);// @param n `n < 2^32`// @param m `1 <= m < 2^32`// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)unsigned long long floor_sum_unsigned(unsigned long long n,unsigned long long m,unsigned long long a,unsigned long long b) {unsigned long long ans = 0;while (true) {if (a >= m) {ans += n * (n - 1) / 2 * (a / m);a %= m;}if (b >= m) {ans += n * (b / m);b %= m;}unsigned long long y_max = a * n + b;if (y_max < m) break;// y_max < m * (n + 1)// floor(y_max / m) <= nn = (unsigned long long)(y_max / m);b = (unsigned long long)(y_max % m);std::swap(m, a);}return ans;}} // namespace internal} // namespace atcoder#include <cassert>#include <numeric>#include <type_traits>namespace atcoder {namespace internal {#ifndef _MSC_VERtemplate <class T>using is_signed_int128 =typename std::conditional<std::is_same<T, __int128_t>::value ||std::is_same<T, __int128>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int128 =typename std::conditional<std::is_same<T, __uint128_t>::value ||std::is_same<T, unsigned __int128>::value,std::true_type,std::false_type>::type;template <class T>using make_unsigned_int128 =typename std::conditional<std::is_same<T, __int128_t>::value,__uint128_t,unsigned __int128>;template <class T>using is_integral = typename std::conditional<std::is_integral<T>::value ||is_signed_int128<T>::value ||is_unsigned_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using is_signed_int = typename std::conditional<(is_integral<T>::value &&std::is_signed<T>::value) ||is_signed_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<(is_integral<T>::value &&std::is_unsigned<T>::value) ||is_unsigned_int128<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int128<T>::value,make_unsigned_int128<T>,typename std::conditional<std::is_signed<T>::value,std::make_unsigned<T>,std::common_type<T>>::type>::type;#elsetemplate <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;#endiftemplate <class T>using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T>using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;} // namespace internal} // namespace atcodernamespace atcoder {namespace internal {struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internaltemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>struct static_modint : internal::static_modint_base {using mint = static_modint;public:static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;};template <int id> struct dynamic_modint : internal::modint_base {using mint = dynamic_modint;public:static int mod() { return (int)(bt.umod()); }static void set_mod(int m) {assert(1 <= m);bt = internal::barrett(m);}static mint raw(int v) {mint x;x._v = v;return x;}dynamic_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>dynamic_modint(T v) {long long x = (long long)(v % (long long)(mod()));if (x < 0) x += mod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>dynamic_modint(T v) {_v = (unsigned int)(v % mod());}unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v += mod() - rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator*=(const mint& rhs) {_v = bt.mul(_v, rhs._v);return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {auto eg = internal::inv_gcd(_v, mod());assert(eg.first == 1);return eg.second;}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static internal::barrett bt;static unsigned int umod() { return bt.umod(); }};template <int id> internal::barrett dynamic_modint<id>::bt(998244353);using modint998244353 = static_modint<998244353>;using modint1000000007 = static_modint<1000000007>;using modint = dynamic_modint<-1>;namespace internal {template <class T>using is_static_modint = std::is_base_of<internal::static_modint_base, T>;template <class T>using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;template <class> struct is_dynamic_modint : public std::false_type {};template <int id>struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};template <class T>using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;} // namespace internal} // namespace atcoderusing mint = atcoder::modint1000000007;#line 2 "/Users/Shared/po167_library/math/Binomial.hpp"#line 5 "/Users/Shared/po167_library/math/Binomial.hpp"namespace po167{template<class T>struct Binomial{std::vector<T> fact_vec, fact_inv_vec;void extend(int m = -1){int n = fact_vec.size();if (m == -1) m = n * 2;if (n >= m) return;fact_vec.resize(m);fact_inv_vec.resize(m);for (int i = n; i < m; i++){fact_vec[i] = fact_vec[i - 1] * T(i);}fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1];for (int i = m - 1; i > n; i--){fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i);}}Binomial(int MAX = 0){fact_vec.resize(1, T(1));fact_inv_vec.resize(1, T(1));extend(MAX + 1);}T fact(int i){if (i < 0) return 0;while (int(fact_vec.size()) <= i) extend();return fact_vec[i];}T invfact(int i){if (i < 0) return 0;while (int(fact_inv_vec.size()) <= i) extend();return fact_inv_vec[i];}T C(int a, int b){if (a < b || b < 0) return 0;return fact(a) * invfact(b) * invfact(a - b);}T invC(int a, int b){if (a < b || b < 0) return 0;return fact(b) * fact(a - b) *invfact(a);}T P(int a, int b){if (a < b || b < 0) return 0;return fact(a) * invfact(a - b);}T inv(int a){if (a < 0) return inv(-a) * T(-1);if (a == 0) return 1;return fact(a - 1) * invfact(a);}T Catalan(int n){if (n < 0) return 0;return fact(2 * n) * invfact(n + 1) * invfact(n);}T narayana(int n, int k){if (n <= 0 || n < k || k < 1) return 0;return C(n, k) * C(n, k - 1) * inv(n);}T Catalan_pow(int n,int d){if (n < 0 || d < 0) return 0;if (d == 0){if (n == 0) return 1;return 0;}return T(d) * inv(d + n) * C(2 * n + d - 1, n);}// retrun [x^a] 1/(1-x)^bT ruiseki(int a,int b){if (a < 0 || b < 0) return 0;if (a == 0){return 1;}return C(a + b - 1, b - 1);}// (a, b) -> (c, d)// always x + e >= yT mirror(int a, int b, int c, int d, int e = 0){if (a + e < b || c + e < d) return 0;if (a > c || b > d) return 0;a += e;c += e;return C(c + d - a - b, c - a) - C(c + d - a - b, c - b + 1);}// return sum_{i = 0, ... , a} sum_{j = 0, ... , b} C(i + j, i)// return C(a + b + 2, a + 1) - 1;T gird_sum(int a, int b){if (a < 0 || b < 0) return 0;return C(a + b + 2, a + 1) - 1;}// return sum_{i = a, ..., b - 1} sum_{j = c, ... , d - 1} C(i + j, i)// AGC 018 ET gird_sum_2(int a, int b, int c, int d){if (a >= b || c >= d) return 0;a--, b--, c--, d--;return gird_sum(a, c) - gird_sum(a, d) - gird_sum(b, c) + gird_sum(b, d);}};}#line 32 "a.cpp"void solve();// CYAN / FREDERICint main() {ios::sync_with_stdio(false);cin.tie(nullptr);int t = 1;// cin >> t;rep(i, 0, t) solve();}void solve(){int H, W;cin >> H >> W;po167::Binomial<mint> table;mint ans = 0;mint m = 1;for (int i = H; i >= 0; i--){ans += (m - 1).pow(W) * table.C(H, i) * (i & 1 ? -1 : 1);m *= 2;}cout << ans.val() << "\n";}