結果

問題 No.2873 Kendall's Tau
ユーザー leaf_1415leaf_1415
提出日時 2024-09-06 21:55:45
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 496 ms / 4,500 ms
コード長 11,063 bytes
コンパイル時間 1,527 ms
コンパイル使用メモリ 121,944 KB
実行使用メモリ 23,400 KB
最終ジャッジ日時 2024-09-06 21:56:43
合計ジャッジ時間 9,214 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
9,600 KB
testcase_01 AC 4 ms
10,196 KB
testcase_02 AC 4 ms
10,300 KB
testcase_03 AC 4 ms
9,736 KB
testcase_04 AC 5 ms
9,616 KB
testcase_05 AC 4 ms
9,460 KB
testcase_06 AC 4 ms
9,532 KB
testcase_07 AC 382 ms
18,920 KB
testcase_08 AC 462 ms
21,992 KB
testcase_09 AC 399 ms
18,664 KB
testcase_10 AC 496 ms
23,400 KB
testcase_11 AC 376 ms
18,408 KB
testcase_12 AC 465 ms
21,936 KB
testcase_13 AC 96 ms
12,680 KB
testcase_14 AC 373 ms
20,764 KB
testcase_15 AC 57 ms
11,900 KB
testcase_16 AC 56 ms
12,080 KB
testcase_17 AC 263 ms
16,848 KB
testcase_18 AC 200 ms
15,928 KB
testcase_19 AC 272 ms
17,772 KB
testcase_20 AC 57 ms
12,124 KB
testcase_21 AC 210 ms
16,264 KB
testcase_22 AC 83 ms
13,680 KB
testcase_23 AC 209 ms
16,396 KB
testcase_24 AC 25 ms
10,532 KB
testcase_25 AC 52 ms
13,272 KB
testcase_26 AC 255 ms
16,480 KB
testcase_27 AC 158 ms
15,452 KB
testcase_28 AC 345 ms
20,456 KB
testcase_29 AC 372 ms
21,800 KB
testcase_30 AC 39 ms
11,528 KB
testcase_31 AC 75 ms
12,640 KB
testcase_32 AC 215 ms
16,680 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <cassert>
#include <vector>
#include <list>
#include <stack>
#include <queue>
#include <deque>
#include <map>
#include <set>
#include <bitset>
#include <string>
#include <algorithm>
#include <utility>
#include <complex>
#include <array>
#include <unordered_set>
#include <unordered_map>
#define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++)
#define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--)
#define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++)
#define pers(x, s) for(ll x = (ll)(s).size()-1; (x) >= 0; (x)--)
#define chmin(x, y) (x) = min((x), (y))
#define chmax(x, y) (x) = max((x), (y))
#define sz(x) ((ll)(x).size())
#define all(x) (x).begin(),(x).end()
#define rall(x) (x).rbegin(),(x).rend()
#define outl(...) dump_func(__VA_ARGS__)
#define outf(x) cout << fixed << setprecision(16) << (x) << endl
#define pb push_back
#define fi first
#define se second
#define inf 2e18
#define eps 1e-9
const double PI = 3.1415926535897932384626433;

using namespace std;

#define double long double
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll> P;
template<class T> using Preq = priority_queue<T>;
template<class T> using preq = priority_queue<T, vector<T>, greater<T>>;

struct edge{
	ll to, cost;
	edge(){}
	edge(ll a, ll b){ to = a, cost = b;}
};
const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};
const int dx8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dy8[] = {0, -1, -1, -1, 0, 1, 1, 1};

const int mod = 998244353;
//const int mod = 1000000007;

struct mint{
	int x;
	mint(ll y = 0){if(y < 0 || y >= mod) y = (y%mod+mod)%mod; x = y;}
	mint(const mint &ope) {x = ope.x;}
	mint operator-(){return mint(-x);}
	mint operator+(const mint &ope){return mint(x) += ope;}
	mint operator-(const mint &ope){return mint(x) -= ope;}
	mint operator*(const mint &ope){return mint(x) *= ope;}
	mint operator/(const mint &ope){return mint(x) /= ope;}
	mint& operator+=(const mint &ope){x += ope.x; if(x >= mod) x -= mod; return *this;}
	mint& operator-=(const mint &ope){x += mod - ope.x; if(x >= mod) x -= mod; return *this;}
	mint& operator*=(const mint &ope){ll tmp = x; tmp *= ope.x, tmp %= mod; x = tmp; return *this;}
	mint& operator/=(const mint &ope){
		ll n = mod-2; mint mul = ope;
		while(n){if(n & 1) *this *= mul; mul *= mul; n >>= 1;}
		return *this;
	}
	mint inverse(){return mint(1) / *this;}
	bool operator ==(const mint &ope){return x == ope.x;}
	bool operator !=(const mint &ope){return x != ope.x;}
	bool operator <(const mint &ope)const{return x < ope.x;}
};
mint modpow(mint a, ll n){
	if(n == 0) return mint(1);
	if(n % 2) return a * modpow(a, n-1);
	else return modpow(a*a, n/2);
}
istream& operator >>(istream &is, mint &ope){ll t; is >> t, ope = mint(t); return is;}
ostream& operator <<(ostream &os, mint &ope){return os << ope.x;}
ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;}

ll modpow(ll a, ll n, ll mod){
	if(n == 0) return 1;
	if(n % 2) return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod;
	else return modpow((a*a)%mod, n/2, mod) % mod;
}

vector<mint> fact, fact_inv;
void make_fact(int n){
	fact.resize(n+1), fact_inv.resize(n+1);
	fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i);
	fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1);
}
mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];}
mint perm(int n, int k){ return comb(n, k) * fact[k]; }
mint divide(int n, int k){ if(n == 0 && k == 0) return 1; return comb(n+k-1, k-1); }
template<typename T> T comb2(ll n, ll k){ if(n < 0 || k < 0 || n < k) return T(0); T ret = 1; rep(i, 1, k) ret *= n-k+i, ret /= i; return ret;}
mint cat(ll w, ll h, ll b = 0){ return comb(w+h, w) - comb(w+h, h+b+1); } //b >= 0;

vector<ll> prime, pvec, qrime;
void make_prime(int n){
	prime.resize(n+1);
	rep(i, 2, n){
		if(prime[i] == 0) pvec.push_back(i), prime[i] = i;
		for(auto p : pvec){ if(i*p > n || p > prime[i]) break; prime[i*p] = p;}
	}
}
void make_qrime(int n){
	qrime.resize(n+1);
	rep(i, 2, n){int ni = i / prime[i]; if(prime[i] == prime[ni]) qrime[i] = qrime[ni] * prime[i]; else qrime[i] = prime[i];}
}
void factorize(ll n, map<ll, ll> &mp){
	mp.clear();
	for(auto p : pvec) while(n % p == 0) mp[p]++, n /= p;
	if(n > 1) mp[n]++;
}

template<typename S, typename T, typename U> bool isin(S x, T l, U r){return l <= x && x <= r;}
template<typename T> bool isdigit(T c){return isin(c, '0', '9');}
template<typename T> bool islower(T c){return isin(c, 'a', 'z');}
template<typename T> bool isupper(T c){return isin(c, 'A', 'Z');}

bool exceed(ll x, ll y, ll m){return y > 0 && x >= m / y + 1;}
void mark(){ cout << "*" << endl; }
void yes(){ cout << "Yes" << endl; }
void no(){ cout << "No" << endl; }
ll floor(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return a/b; else return -((-a+b-1)/b); }
ll ceil(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return (a+b-1)/b; else return -((-a)/b); }
ll modulo(ll a, ll b){ b = abs(b); return a - floor(a, b) * b;}
ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;}
ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);}
ll lcm(ll a, ll b){return a/gcd(a, b)*b;}
template<typename T> T arith(T x){return x*(x+1)/2;}
template<typename T> T arith2(T x){return x*(x+1)*(x*2+1)/6;}
ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;}
ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;}
string lltos(ll x, ll b = 10){if(x == 0) return "0"; string ret; for(;x;x/=b) ret += x % b + '0'; reverse(all(ret)); return ret;}
ll stoll(string &s, ll b = 10){ll ret = 0; for(auto c : s) ret *= b, ret += c - '0'; return ret;}
template<typename T> void uniq(T &vec){sort(all(vec)); vec.erase(unique(all(vec)), vec.end());}
int popcount(ull x){
	x -= ((x>>1)&0x5555555555555555ULL), x = (x & 0x3333333333333333ULL) + ((x>>2) & 0x3333333333333333ULL);
	return (((x + (x>>4)) & 0x0F0F0F0F0F0F0F0FULL) * 0x0101010101010101ULL) >> 56;
}
template<typename T> vector<pair<T, ll>> rle(vector<T> vec){
	vector<pair<T, ll>> ret;
	for(auto x : vec){if(sz(ret) == 0 || ret.back().first != x) ret.push_back(P(x, 1)); else ret.back().second++;}
	return ret;
}
vector<pair<char, ll>> rle(string s){ vector<char> vec; for(auto c : s) vec.push_back(c); return rle(vec);}

template<class S, class T> pair<S, T>& operator+=(pair<S, T> &s, const pair<S, T> &t){s.first += t.first, s.second += t.second; return s;}
template<class S, class T> pair<S, T>& operator-=(pair<S, T> &s, const pair<S, T> &t){s.first -= t.first, s.second -= t.second; return s;}
template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first+t.first, s.second+t.second);}
template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first-t.first, s.second-t.second);}
template<class T> T dot(const pair<T, T> &s, const pair<T, T> &t){return s.first*t.first + s.second*t.second;}
template<class T> T cross(const pair<T, T> &s, const pair<T, T> &t){return s.first*t.second - s.second*t.first;}
template<class T> T mdist(pair<T, T> s, pair<T, T> t){return abs(s.first-t.first) + abs(s.second-t.second);}
template<class T> T cdist(pair<T, T> s, pair<T, T> t){return max(abs(s.first-t.first), abs(s.second-t.second));}
template<class T> T edist2(pair<T, T> s, pair<T, T> t){return (s.first-t.first)*(s.first-t.first) + (s.second-t.second)*(s.second-t.second);}

template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;}
template<typename T> ostream& operator << (ostream& os, vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;}
template<typename T> ostream& operator << (ostream& os, const vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;}
template<typename T> ostream& operator << (ostream& os, list<T>& ls){for(auto x : ls) os << x << " "; return os;}
template<typename T> ostream& operator << (ostream& os, const list<T>& ls){for(auto x : ls) os << x << " "; return os;}
template<typename T> ostream& operator << (ostream& os, deque<T>& deq){reps(i,  deq) os << deq[i] << " "; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& ope){ for(auto p : ope) os << "(" << p.first << ", " << p.second << "),";return os;}
template<typename T> ostream& operator << (ostream& os, set<T>& ope){for(auto x : ope) os << x << " "; return os;}
template<typename T> ostream& operator << (ostream& os, multiset<T>& ope){for(auto x : ope) os << x << " "; return os;}
template<typename T> void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";} cout << endl;}
template<typename T> void outg(T a[], ll sy, ll ty, ll sx, ll tx){rep(y, sy, ty){rep(x, sx, tx){cout << a[x][y]; if(x < tx) cout << " ";} cout << endl;}}
template<typename T, size_t N> ostream& operator << (ostream& os, array<T, N>& arr){reps(i, arr) os << arr[i] << " "; return os;}
template<typename T, size_t N> ostream& operator << (ostream& os, const array<T, N>& arr){reps(i, arr) os << arr[i] << " "; return os;}
void dump_func(){cout << endl;}
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&... tail){cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...);}
template<typename T> void bssert(bool b, T t){ if(!b) cout << t << endl, exit(0); }


struct BIT{
	typedef ll T;
	T Ident(){ return 0; }//identity
	T ope(T a, T b){ return a+b; } //operator

	int size;
	vector<T> bit;
	BIT(){size = 0;}
	BIT(int s){
		size = s;
		bit.resize(size+2);
		init();
	}
	void init(){
		for(int i = 1; i <= size+1; i++) bit[i] = Ident();
	}
	T query(ll i){
		i++;
		T ret = 0;
		while(i > 0){
			ret = ope(ret, bit[i]);
			i -= i&(-i);
		}
		return ret;
	}
	T query(ll l, ll r){
		if(l > r) return Ident();
		return query(r) - query(l-1);
	}
	void add(ll i, T x){
		i++;
		while(i <= size+1){
			bit[i] = ope(bit[i], x);
			i += i&(-i);
		}
	}
};

ll n;
ll x[200005], y[200005];
vector<ll> vec[200005];

ll calcR(ll x[])
{
	ll ret = n*(n-1)/2;
	map<ll, ll> mp;
	rep(i, 1, n) mp[x[i]]++;
	for(auto p : mp) ret -= p.se*(p.se-1)/2;
	return ret;
}

void cp(ll x[])
{
	vector<ll> comp;
	rep(i, 1, n) comp.pb(x[i]);
	uniq(comp);
	rep(i, 1, n) x[i] = lower_bound(all(comp), x[i]) - comp.begin();
}

int main(void)
{
	ios::sync_with_stdio(0);
	cin.tie(0);

	cin >> n;
	rep(i, 1, n) cin >> x[i] >> y[i];
	cp(x), cp(y);
	ll r = calcR(x), s = calcR(y);

	rep(i, 1, n) vec[x[i]].pb(y[i]);

	BIT bit(n+5); ll ans = 0;
	rep(i, 0, n){
		for(auto y : vec[i]){
			ans += bit.query(0, y-1);
			ans -= bit.query(y+1, n);
		}
		for(auto y : vec[i]) bit.add(y, 1);
	}
	double a = ans;
	a /= sqrtl(r)*sqrtl(s);
	outf(a);

	return 0;
}
0