結果
問題 | No.2873 Kendall's Tau |
ユーザー | nikoro256 |
提出日時 | 2024-09-06 22:36:52 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,795 ms / 4,500 ms |
コード長 | 5,384 bytes |
コンパイル時間 | 296 ms |
コンパイル使用メモリ | 82,364 KB |
実行使用メモリ | 183,340 KB |
最終ジャッジ日時 | 2024-09-06 22:37:32 |
合計ジャッジ時間 | 29,705 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 66 ms
68,912 KB |
testcase_01 | AC | 64 ms
68,708 KB |
testcase_02 | AC | 64 ms
69,308 KB |
testcase_03 | AC | 65 ms
69,076 KB |
testcase_04 | AC | 64 ms
68,952 KB |
testcase_05 | AC | 65 ms
68,620 KB |
testcase_06 | AC | 65 ms
68,924 KB |
testcase_07 | AC | 1,700 ms
157,464 KB |
testcase_08 | AC | 1,740 ms
174,452 KB |
testcase_09 | AC | 1,690 ms
155,648 KB |
testcase_10 | AC | 1,795 ms
183,340 KB |
testcase_11 | AC | 1,673 ms
153,140 KB |
testcase_12 | AC | 1,688 ms
169,532 KB |
testcase_13 | AC | 608 ms
97,692 KB |
testcase_14 | AC | 1,355 ms
149,664 KB |
testcase_15 | AC | 392 ms
93,252 KB |
testcase_16 | AC | 425 ms
93,044 KB |
testcase_17 | AC | 1,302 ms
135,140 KB |
testcase_18 | AC | 993 ms
123,888 KB |
testcase_19 | AC | 1,248 ms
138,348 KB |
testcase_20 | AC | 431 ms
92,484 KB |
testcase_21 | AC | 1,015 ms
122,244 KB |
testcase_22 | AC | 534 ms
96,956 KB |
testcase_23 | AC | 1,053 ms
121,940 KB |
testcase_24 | AC | 295 ms
84,668 KB |
testcase_25 | AC | 413 ms
91,960 KB |
testcase_26 | AC | 1,229 ms
132,204 KB |
testcase_27 | AC | 848 ms
115,432 KB |
testcase_28 | AC | 1,457 ms
153,368 KB |
testcase_29 | AC | 1,481 ms
151,284 KB |
testcase_30 | AC | 369 ms
87,900 KB |
testcase_31 | AC | 504 ms
95,080 KB |
testcase_32 | AC | 1,022 ms
123,584 KB |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a: Optional[List[T]] = None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) self.size = len(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int]: "Find the bucket and position which x should be inserted. self must not be empty." for a in self.a: if x <= a[-1]: break return (a, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, i = self._position(x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a, i = self._position(x) a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def _pop(self, a: List[T], i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: self._build() return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return self._pop(a, i) else: for a in self.a: if i < len(a): return self._pop(a, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans from collections import defaultdict N=int(input()) xd=defaultdict(int) yd=defaultdict(int) dic=defaultdict(list) lis=[] for _ in range(N): x,y=map(int,input().split()) xd[x]+=1 yd[y]+=1 dic[x].append(y) lis.append((x,y)) P,Q,R,S=0,0,0,0 for k in xd.keys(): R+=(N-xd[k])*xd[k] for k in yd.keys(): S+=(N-yd[k])*yd[k] R//=2 S//=2 lis.sort() smt=SortedMultiset() for x in sorted(list(dic.keys())): for y in dic[x]: P+=smt.index(y) Q+=len(smt)-smt.index_right(y) for y in dic[x]: smt.add(y) print((P-Q)/math.sqrt(R*S))