結果
| 問題 |
No.2873 Kendall's Tau
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-09-06 22:39:41 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,425 ms / 4,500 ms |
| コード長 | 2,298 bytes |
| コンパイル時間 | 375 ms |
| コンパイル使用メモリ | 82,428 KB |
| 実行使用メモリ | 217,736 KB |
| 最終ジャッジ日時 | 2024-09-06 22:40:05 |
| 合計ジャッジ時間 | 24,187 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
class SegTree:
def __init__(self, op, e, n, v=None):
self._n = n
self._op = op
self._e = e
self._log = (n - 1).bit_length()
self._size = 1 << self._log
self._d = [self._e()] * (self._size << 1)
if v is not None:
for i in range(self._n):
self._d[self._size + i] = v[i]
for i in range(self._size - 1, 0, -1):
self._d[i] = self._op(self._d[i << 1], self._d[i << 1 | 1])
def set(self, p, x):
p += self._size
self._d[p] = x
while p:
l, r = p, p^1
if l > r: l, r = r, l
self._d[p >> 1] = self._op(self._d[l], self._d[r])
p >>= 1
def get(self, p):
return self._d[p + self._size]
#[l, r)の区間で求める
def prod(self, l, r):
sml, smr = self._e(), self._e()
l += self._size
r += self._size
while l < r:
if l & 1:
sml = self._op(sml, self._d[l])
l += 1
if r & 1:
r -= 1
smr = self._op(self._d[r], smr)
l >>= 1
r >>= 1
return self._op(sml, smr)
def all_prod(self):
return self._d[1]
def op(x, y):
return x+y
def e():
return 0
import math
import sys
input = sys.stdin.readline
N = int(input())
XY = [list(map(int, input().split())) for _ in range(N)]
s = set()
for x, y in XY:
s.add(x)
s.add(y)
s = list(s)
s.sort()
Z = dict()
for i, ss in enumerate(s):
Z[ss] = i
xy = []
for x, y in XY:
xx, yy = Z[x], Z[y]
xy.append((xx, yy))
xy.sort()
L = len(Z)
ST = SegTree(op, e, L)
tmp = []
bk_x = -1
P = 0
Q = 0
for x, y in xy:
if x>bk_x:
for t in tmp:
ST.set(t, ST.get(t)+1)
tmp = []
yminus = ST.prod(0, y)
P += yminus
yplus = ST.prod(y+1, L)
Q += yplus
tmp.append(y)
bk_x = x
X = dict()
Y = dict()
for x, y in XY:
if x not in X:
X[x] = 1
else:
X[x] += 1
if y not in Y:
Y[y] = 1
else:
Y[y] += 1
R = 0
S = 0
cnt = 0
for key in X:
cnt += X[key]*(X[key]-1)//2
R = N*(N-1)//2 - cnt
cnt = 0
for key in Y:
cnt += Y[key]*(Y[key]-1)//2
S = N*(N-1)//2 - cnt
ans = (P-Q) / math.sqrt(R*S)
print(ans)