結果
問題 | No.2873 Kendall's Tau |
ユーザー |
|
提出日時 | 2024-09-06 22:51:33 |
言語 | D (dmd 2.109.1) |
結果 |
AC
|
実行時間 | 845 ms / 4,500 ms |
コード長 | 7,687 bytes |
コンパイル時間 | 6,288 ms |
コンパイル使用メモリ | 234,592 KB |
実行使用メモリ | 19,884 KB |
最終ジャッジ日時 | 2024-09-06 22:53:33 |
合計ジャッジ時間 | 18,877 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
import std;void main () {int N = readln.chomp.to!int;auto x = new int[](N);auto y = new int[](N);foreach (i; 0..N) readln.read(x[i], y[i]);// PとQをどう求めるかが最も難しい。// Pについて考える。// 面倒なので、片方の大小関係は異なるとして考えたい。// xj < xiを仮定する。この時、yj < yiが必要十分条件。xの昇順にデータを追加することを考えると、rectanglesumの特殊ケースに帰着する。これは平面走査で解ける。// Qも不等号の向きを反転させればよい。long P = () {long res = 0;auto index = iota(N).array.sort!((i, j) => x[i] < x[j]).array;auto rsq = new DynamicSegmentTree!(int, (int a, int b) => a + b, () => 0)(10L ^^ 10);const int pad = 10 ^^ 9;int L = 0, R = 0;while (L < N) {while (R < N) {if (x[index[L]] != x[index[R]]) break;R++;}foreach (U; L..R) {res += rsq.prod(0, y[index[U]] + pad);}// 追加foreach (U; L..R) {rsq.set(y[index[U]] + pad, rsq.get(y[index[U]] + pad) + 1);}L = R;}return res;}();long Q = () {long res = 0;auto index = iota(N).array.sort!((i, j) => x[i] < x[j]).array;auto rsq = new DynamicSegmentTree!(int, (int a, int b) => a + b, () => 0)(10L ^^ 10);const int pad = 10 ^^ 9;int L = 0, R = 0;while (L < N) {while (R < N) {if (x[index[L]] != x[index[R]]) break;R++;}foreach (U; L..R) {res += rsq.prod(y[index[U]] + pad + 1, 10L ^^ 10);}// 追加foreach (U; L..R) {rsq.set(y[index[U]] + pad, rsq.get(y[index[U]] + pad) + 1);}L = R;}return res;}();long R = () {long res = 0;auto index = iota(N).array.sort!((i, j) => x[i] < x[j]).array;int L = 0, R = 0;while (L < N) {while (R < N) {if (x[index[L]] != x[index[R]]) break;R++;}res += 1L * (R - L) * (N - (R - L));L = R;}return res / 2;}();long S = () {long res = 0;auto index = iota(N).array.sort!((i, j) => y[i] < y[j]).array;int L = 0, R = 0;while (L < N) {while (R < N) {if (y[index[L]] != y[index[R]]) break;R++;}res += 1L * (R - L) * (N - (R - L));L = R;}return res / 2;}();double ans = (P - Q) / sqrt(R.to!double) / sqrt(S.to!double);writefln("%.10f", ans);}void read (T...) (string S, ref T args) {import std.conv : to;import std.array : split;auto buf = S.split;foreach (i, ref arg; args) {arg = buf[i].to!(typeof(arg));}}import std.traits : ReturnType, isCallable, Parameters;import std.meta : AliasSeq;class DynamicSegmentTree (T, alias op, alias e) {// TODO: assertのメッセージを表示static assert(isCallable!(op));static assert(isCallable!(e));static assert(is (ReturnType!(op) == T));static assert(is (ReturnType!(e) == T));static assert(is (Parameters!(op) == AliasSeq!(T, T)));static assert(is (Parameters!(e) == AliasSeq!()));// 内部が1-indexedで動的な完全二分セグメント木import std.format : format;public:this (long N_)in { assert(1 <= N_, format("Dynamic SegmentTree: N = %s does not satisfy constraints. N must be in range of [1, %s]", 4 * 10L^^18)); }do {length = N_;// N_以上の2冪に設定N = 1;while (N < N_) N *= 2;}void set (long idx, T val)in { assert(0 <= idx && idx < length, format("Dynamic SegmentTree: idx = %s does not satisfy constraints. idx must be in range of [0, %s)",idx, length)); }do {idx++;internal_set(root, idx, val, 1, N + 1);}T get (long idx)in { assert(0 <= idx && idx < length, format("Dynamic SegmentTree: idx = %s does not satisfy constraints. idx must be in range of [0, %s)",idx, length)); }do {idx++;return internal_get(root, idx, 1, N + 1);}T prod (long l, long r)in {assert(0 <= l && l < length, format("Dynamic SegmentTree: l = %s does not satisfy constraints. l must be in range of [0, %s)", l, length));assert(0 <= r && r <= length, format("Dynamic SegmentTree: r = %s does not satisfy constraints. r must be in range of [0, %s]", r, length));assert(l <= r, format("Dynamic SegmentTree: l = %s, r = %s does not satisfy constraints. l <= r must be satisfied.", l, r));}do {l++, r++;if (l == r) return e();return internal_prod(root, l, r, 1, N + 1);}T all_prod () {return internal_prod(root, 1, N + 1, 1, N + 1);}private:struct node {long index;T value, product;node *left = null, right = null;}void node_update (node *n) {n.product = op(op((n.left == null ? e() : n.left.product), n.value),(n.right == null ? e() : n.right.product));}node *root = null;long N = 0;long length = 0;// [l, r) : 今見ている部分木が管理する範囲node *internal_set (ref node *cur, long idx, T val, long l, long r) {if (cur == null) {return cur = new node(idx, val, val, null, null);}if (cur.index == idx) {cur.value = val;node_update(cur);return cur;}// 既に部分木管理ノードが存在するときの処理import std.algorithm : swap;long mid = (l + r) / 2;if (idx < mid) {// 今いる人を押しのけるif (cur.index < idx) { swap(cur.value, val); swap(cur.index, idx); }cur.left = internal_set(cur.left, idx, val, l, mid);}else {if (idx < cur.index) { swap(cur.value, val); swap(cur.index, idx); }cur.right = internal_set(cur.right, idx, val, mid, r);}node_update(cur);return cur;}T internal_get (const node *cur, long idx, long l, long r) {if (cur == null) return e();if (cur.index == idx) return cur.value;long mid = (l + r) / 2;if (idx < mid) return internal_get(cur.left, idx, l, mid);return internal_get(cur.right, idx, mid, r);}// [a, b) = 要求区間T internal_prod (const node *cur, long a, long b, long l, long r) {if (cur == null || b <= l || r <= a) return e();if (a <= l && r <= b) return cur.product;long mid = (l + r) / 2;T res = internal_prod(cur.left, a, b, l, mid);if (a <= cur.index && cur.index < b) res = op(res, cur.value);res = op(res, internal_prod(cur.right, a, b, mid, r));return res;}}