結果
問題 | No.2873 Kendall's Tau |
ユーザー |
![]() |
提出日時 | 2024-09-06 23:06:35 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 608 ms / 4,500 ms |
コード長 | 13,970 bytes |
コンパイル時間 | 3,955 ms |
コンパイル使用メモリ | 277,732 KB |
実行使用メモリ | 26,452 KB |
最終ジャッジ日時 | 2024-09-06 23:07:10 |
合計ジャッジ時間 | 13,151 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
コンパイルメッセージ
main.cpp: In function 'int main()': main.cpp:397:13: warning: 'q' may be used uninitialized [-Wmaybe-uninitialized] 397 | cout<<(p-q)/sqrt(r*s)<<el; | ~~^~~ main.cpp:351:14: note: 'q' was declared here 351 | double p,q,r,s; | ^ main.cpp:397:13: warning: 'p' may be used uninitialized [-Wmaybe-uninitialized] 397 | cout<<(p-q)/sqrt(r*s)<<el; | ~~^~~ main.cpp:351:12: note: 'p' was declared here 351 | double p,q,r,s; | ^ main.cpp:397:21: warning: 's' may be used uninitialized [-Wmaybe-uninitialized] 397 | cout<<(p-q)/sqrt(r*s)<<el; | ~~~~^~~~~ main.cpp:351:18: note: 's' was declared here 351 | double p,q,r,s; | ^ main.cpp:397:21: warning: 'r' may be used uninitialized [-Wmaybe-uninitialized] 397 | cout<<(p-q)/sqrt(r*s)<<el; | ~~~~^~~~~ main.cpp:351:16: note: 'r' was declared here 351 | double p,q,r,s; | ^
ソースコード
#include <bits/stdc++.h>using namespace std;#pragma GCC target("avx2")#pragma GCC optimize("O3")#pragma GCC optimize("unroll-loops")#define INT(...)\int __VA_ARGS__;\IN(__VA_ARGS__)#define LL(...)\ll __VA_ARGS__;\IN(__VA_ARGS__)#define STR(...)\string __VA_ARGS__;\IN(__VA_ARGS__)#define CHR(...)\char __VA_ARGS__;\IN(__VA_ARGS__)#define DBL(...)\double __VA_ARGS__;\IN(__VA_ARGS__)#define ll long long#define cout std::cout#define yes cout<<"Yes"<<"\n"#define no cout<<"No"<<"\n"#define rep(i,a,b) for(int i=a;i<b;i++)#define rrep(i,a,b) for(int i=a;i>=b;i--)#define fore(i,a) for(auto &i:a)#define all(x) (x).begin(),(x).end()#define allr(x) (x).rbegin(),(x).rend()#define SUM(v) accumulate(all(v), 0LL)#define MIN(v) *min_element(all(v))#define MAX(v) *max_element(all(v))#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))#define pii pair<int, int>#define pll pair<long long,long long>#define pb push_back#define eb emplace_back#define ff first#define ss second#define vi vector<int>#define vll vector<long long>#define vc vector<char>#define vvi vector<vector<int>>#define vec(type, name, ...) vector<type> name(__VA_ARGS__)#define VEC(type, name, size)\vector<type> name(size);\IN(name)int scan() { return getchar(); }void scan(int &a) { cin >> a; }void scan(long long &a) { cin >> a; }void scan(char &a) { cin >> a; }void scan(double &a) { cin >> a; }void scan(string &a) { cin >> a; }template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }template <class T> void scan(vector<T> &);template <class T> void scan(vector<T> &a) {for(auto &i : a) scan(i);}template <class T> void scan(T &a) { cin >> a; }void IN() {}template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {scan(head);IN(tail...);}#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))#define VV(type, name, h, w)\vector<vector<type>> name(h, vector<type>(w));\IN(name)#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))#define vvvv(type, name, a, b, c, ...)\vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>;template <class T> pair<T, T> operator-(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff - y.ff, x.ss - y.ss); }template <class T> pair<T, T> operator+(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff + y.ff, x.ss + y.ss); }template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.ff, r.ff), min(l.ss, r.ss)); }template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())//座標圧縮template <typename T> void zip(vector<T> &x) {vector<T> y = x;UNIQUE(y);for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }}template <class T> T ceil(T x, T y) {assert(y >= 1);return (x > 0 ? (x + y - 1) / y : x / y);}template <class T> T floor(T x, T y) {assert(y >= 1);return (x > 0 ? x / y : (x + y - 1) / y);}long long POW(long long x, int n) {long long res = 1LL;for(; n; n >>= 1, x *= x)if(n & 1) res *= x;return res;}long long modpow(long long a, long long n, long long mod) {long long res = 1;while (n > 0) {if (n & 1) res = res * a % mod;a = a * a % mod;n >>= 1;}return res;}//return 0<=a&&a<h&&0<=b&&b<w;inline bool ingrid(int a,int b,int h,int w){return 0<=a&&a<h&&0<=b&&b<w;}//return return 0<=a&&a<n;inline bool inl(int a,int n){return 0<=a&&a<n;}// bit 演算系ll pow2(int i) { return 1LL << i; }int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }// int allbit(int n) { return (1 << n) - 1; }ll allbit(ll n) { return (1LL << n) - 1; }int popcount(signed t) { return __builtin_popcount(t); }int popcount(ll t) { return __builtin_popcountll(t); }bool ispow2(int i) { return i && (i & -i) == i; }int in() {int x;cin >> x;return x;}ll lin() {unsigned long long x;cin >> x;return x;}long long sqrtll(long long x) {assert(x >= 0);long long rev = sqrt(x);while(rev * rev > x) --rev;while((rev+1) * (rev+1)<=x) ++rev;return rev;}int logN(long long n){int ret=1;while((1LL<<ret)<n)ret++;return ret;}const double PI=3.1415926535897932384626433832795028841971;const ll MOD = 998244353;const int INFI = numeric_limits<int>::max() / 2; const long long INFL = numeric_limits<long long>::max() / 2;template<class T>void debug(vector<T> a){rep(i,0,(int)a.size()){cout<<a[i]<<' ';}cout<<endl;return;}template<typename T>bool isPalin(T s){rep(i,0,s.size()){if(s[i]!=s[s.size()-i-1])return false;}return true;}template <std::uint_fast64_t Modulus> class modint {using u64 = std::uint_fast64_t;public:u64 a;constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}constexpr u64 &val() noexcept { return a; }constexpr const u64 &val() const noexcept { return a; }constexpr modint operator+(const modint rhs) const noexcept {return modint(*this) += rhs;}constexpr modint operator-(const modint rhs) const noexcept {return modint(*this) -= rhs;}constexpr modint operator*(const modint rhs) const noexcept {return modint(*this) *= rhs;}constexpr modint operator/(const modint rhs) const noexcept {return modint(*this) /= rhs;}constexpr modint &operator+=(const modint rhs) noexcept {a += rhs.a;if (a >= Modulus) {a -= Modulus;}return *this;}constexpr modint &operator-=(const modint rhs) noexcept {if (a < rhs.a) {a += Modulus;}a -= rhs.a;return *this;}constexpr modint &operator*=(const modint rhs) noexcept {a = a * rhs.a % Modulus;return *this;}constexpr modint &operator/=(modint rhs) noexcept {u64 exp = Modulus - 2;while (exp) {if (exp % 2) {*this *= rhs;}rhs *= rhs;exp /= 2;}return *this;}friend bool operator==(const modint& a,const modint& b) { return a.val()==b.val(); }friend bool operator!=(const modint& a,const modint& b) { return a.val()!=b.val(); }};using mint9=modint<998244353>;using mint1=modint<1000000007>;constexpr pii dx4[4] = {pii{-1, 0}, pii{0, 1}, pii{1, 0}, pii{0, -1}};constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};constexpr pii dx[8] = { {-1, 0}, {0, -1}};#define el "\n"#define endl "\n"#define inf INFINITY#define fastio std::cin.sync_with_stdio(false);std::cin.tie(nullptr);cout<<fixed<<setprecision(16);template< typename T, typename F >struct SegmentTree {int n, sz;vector< T > seg;const F f;const T ti;SegmentTree() = default;explicit SegmentTree(int n, const F f, const T &ti) : n(n), f(f), ti(ti) {sz = 1;while(sz < n) sz <<= 1;seg.assign(2 * sz, ti);}explicit SegmentTree(const vector< T > &v, const F f, const T &ti) :SegmentTree((int) v.size(), f, ti) {build(v);}void build(const vector< T > &v) {assert(n == (int) v.size());for(int k = 0; k < n; k++) seg[k + sz] = v[k];for(int k = sz - 1; k > 0; k--) {seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);}}void set(int k, const T &x) {k += sz;seg[k] = x;while(k >>= 1) {seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);}}T get(int k) const {return seg[k + sz];}T operator[](const int &k) const {return get(k);}void apply(int k, const T &x) {k += sz;seg[k] = f(seg[k], x);while(k >>= 1) {seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);}}T prod(int l, int r) const {T L = ti, R = ti;for(l += sz, r += sz; l < r; l >>= 1, r >>= 1) {if(l & 1) L = f(L, seg[l++]);if(r & 1) R = f(seg[--r], R);}return f(L, R);}T all_prod() const {return seg[1];}template< typename C >int find_first(int l, const C &check) const {if(l >= n) return n;l += sz;T sum = ti;do {while((l & 1) == 0) l >>= 1;if(check(f(sum, seg[l]))){while(l < sz) {l <<= 1;auto nxt = f(sum, seg[l]);if(not check(nxt)) {sum = nxt;l++;}}return l + 1 - sz;}sum = f(sum, seg[l++]);} while((l & -l) != l);return n;}template< typename C >int find_last(int r, const C &check) const {if(r <= 0) return -1;r += sz;T sum = ti;do {r--;while(r > 1 and (r & 1)) r >>= 1;if(check(f(seg[r], sum))) {while(r < sz) {r = (r << 1) + 1;auto nxt = f(seg[r], sum);if(not check(nxt)) {sum = nxt;r--;}}return r - sz;}sum = f(seg[r], sum);} while((r & -r) != r);return -1;}};template< typename T, typename F >SegmentTree< T, F > get_segment_tree(int N, const F &f, const T &ti) {return SegmentTree<T,F>{N, f, ti};}template< typename T, typename F >SegmentTree< T, F > get_segment_tree(const vector< T > &v, const F &f, const T &ti) {return SegmentTree<T,F>{v, f, ti};}int main(){fastio;INT(n);vec(int,x,n);vec(int,y,n);rep(i,0,n)cin>>x[i]>>y[i];zip(y);double p,q,r,s;map<int,int> xmp,ymp;map<int,int> za;rep(i,0,n){xmp[x[i]]++;ymp[y[i]]++;}rep(i,0,n){xmp[x[i]]--;ymp[y[i]]--;r+=(n-1-i)-xmp[x[i]];s+=(n-1-i)-ymp[y[i]];}auto seg=get_segment_tree(300000,[](int a,int b){return a+b;},0);vector<pii> xy(n);rep(i,0,n)xy[i]=pii(x[i],y[i]);sort(all(xy));rep(i,0,n){queue<int> que;que.push(i);//p+=seg.prod(0,xy[i].ss);//q+=seg.prod(xy[i].ss+1,300000);while(i+1<n&&xy[i].ff==xy[i+1].ff){i++;//p+=seg.prod(0,xy[i].ss);//q+=seg.prod(xy[i].ss+1,300000);que.push(i);}while(!que.empty()){int j=que.front();que.pop();seg.apply(xy[j].ss,1);}}rep(i,0,n){seg.apply(xy[i].ss,-1);queue<int> que;que.push(i);while(i+1<n&&xy[i].ff==xy[i+1].ff){i++;seg.apply(xy[i].ss,-1);que.push(i);}while(!que.empty()){int j=que.front();que.pop();q+=seg.prod(0,xy[j].ss);p+=seg.prod(xy[j].ss+1,300000);}}cout<<(p-q)/sqrt(r*s)<<el;return 0;}/**/