結果
問題 | No.2873 Kendall's Tau |
ユーザー | wsrtrt |
提出日時 | 2024-09-06 23:06:35 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 608 ms / 4,500 ms |
コード長 | 13,970 bytes |
コンパイル時間 | 3,955 ms |
コンパイル使用メモリ | 277,732 KB |
実行使用メモリ | 26,452 KB |
最終ジャッジ日時 | 2024-09-06 23:07:10 |
合計ジャッジ時間 | 13,151 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
7,568 KB |
testcase_01 | AC | 4 ms
7,700 KB |
testcase_02 | AC | 3 ms
7,712 KB |
testcase_03 | AC | 4 ms
7,492 KB |
testcase_04 | AC | 4 ms
7,492 KB |
testcase_05 | AC | 3 ms
7,496 KB |
testcase_06 | AC | 4 ms
7,540 KB |
testcase_07 | AC | 502 ms
21,052 KB |
testcase_08 | AC | 608 ms
25,512 KB |
testcase_09 | AC | 524 ms
21,032 KB |
testcase_10 | AC | 593 ms
26,452 KB |
testcase_11 | AC | 502 ms
20,936 KB |
testcase_12 | AC | 574 ms
25,500 KB |
testcase_13 | AC | 137 ms
12,220 KB |
testcase_14 | AC | 483 ms
23,404 KB |
testcase_15 | AC | 75 ms
11,112 KB |
testcase_16 | AC | 73 ms
10,576 KB |
testcase_17 | AC | 344 ms
18,064 KB |
testcase_18 | AC | 268 ms
17,408 KB |
testcase_19 | AC | 345 ms
18,292 KB |
testcase_20 | AC | 75 ms
10,740 KB |
testcase_21 | AC | 276 ms
16,528 KB |
testcase_22 | AC | 108 ms
12,140 KB |
testcase_23 | AC | 305 ms
16,788 KB |
testcase_24 | AC | 33 ms
8,956 KB |
testcase_25 | AC | 72 ms
10,548 KB |
testcase_26 | AC | 364 ms
17,704 KB |
testcase_27 | AC | 235 ms
15,380 KB |
testcase_28 | AC | 491 ms
21,280 KB |
testcase_29 | AC | 492 ms
23,020 KB |
testcase_30 | AC | 54 ms
9,992 KB |
testcase_31 | AC | 103 ms
11,144 KB |
testcase_32 | AC | 289 ms
16,636 KB |
コンパイルメッセージ
main.cpp: In function 'int main()': main.cpp:397:13: warning: 'q' may be used uninitialized [-Wmaybe-uninitialized] 397 | cout<<(p-q)/sqrt(r*s)<<el; | ~~^~~ main.cpp:351:14: note: 'q' was declared here 351 | double p,q,r,s; | ^ main.cpp:397:13: warning: 'p' may be used uninitialized [-Wmaybe-uninitialized] 397 | cout<<(p-q)/sqrt(r*s)<<el; | ~~^~~ main.cpp:351:12: note: 'p' was declared here 351 | double p,q,r,s; | ^ main.cpp:397:21: warning: 's' may be used uninitialized [-Wmaybe-uninitialized] 397 | cout<<(p-q)/sqrt(r*s)<<el; | ~~~~^~~~~ main.cpp:351:18: note: 's' was declared here 351 | double p,q,r,s; | ^ main.cpp:397:21: warning: 'r' may be used uninitialized [-Wmaybe-uninitialized] 397 | cout<<(p-q)/sqrt(r*s)<<el; | ~~~~^~~~~ main.cpp:351:16: note: 'r' was declared here 351 | double p,q,r,s; | ^
ソースコード
#include <bits/stdc++.h> using namespace std; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define INT(...) \ int __VA_ARGS__; \ IN(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ IN(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ IN(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ IN(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ IN(__VA_ARGS__) #define ll long long #define cout std::cout #define yes cout<<"Yes"<<"\n" #define no cout<<"No"<<"\n" #define rep(i,a,b) for(int i=a;i<b;i++) #define rrep(i,a,b) for(int i=a;i>=b;i--) #define fore(i,a) for(auto &i:a) #define all(x) (x).begin(),(x).end() #define allr(x) (x).rbegin(),(x).rend() #define SUM(v) accumulate(all(v), 0LL) #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define pii pair<int, int> #define pll pair<long long,long long> #define pb push_back #define eb emplace_back #define ff first #define ss second #define vi vector<int> #define vll vector<long long> #define vc vector<char> #define vvi vector<vector<int>> #define vec(type, name, ...) vector<type> name(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ IN(name) int scan() { return getchar(); } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(string &a) { cin >> a; } template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); } template <class T> void scan(vector<T> &); template <class T> void scan(vector<T> &a) { for(auto &i : a) scan(i); } template <class T> void scan(T &a) { cin >> a; } void IN() {} template <class Head, class... Tail> void IN(Head &head, Tail &...tail) { scan(head); IN(tail...); } #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ IN(name) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>; template <class T> pair<T, T> operator-(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff - y.ff, x.ss - y.ss); } template <class T> pair<T, T> operator+(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff + y.ff, x.ss + y.ss); } template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.ff, r.ff), min(l.ss, r.ss)); } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) //座標圧縮 template <typename T> void zip(vector<T> &x) { vector<T> y = x; UNIQUE(y); for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); } } template <class T> T ceil(T x, T y) { assert(y >= 1); return (x > 0 ? (x + y - 1) / y : x / y); } template <class T> T floor(T x, T y) { assert(y >= 1); return (x > 0 ? x / y : (x + y - 1) / y); } long long POW(long long x, int n) { long long res = 1LL; for(; n; n >>= 1, x *= x) if(n & 1) res *= x; return res; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } //return 0<=a&&a<h&&0<=b&&b<w; inline bool ingrid(int a,int b,int h,int w){return 0<=a&&a<h&&0<=b&&b<w;} //return return 0<=a&&a<n; inline bool inl(int a,int n){return 0<=a&&a<n;} // bit 演算系 ll pow2(int i) { return 1LL << i; } int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); } // int allbit(int n) { return (1 << n) - 1; } ll allbit(ll n) { return (1LL << n) - 1; } int popcount(signed t) { return __builtin_popcount(t); } int popcount(ll t) { return __builtin_popcountll(t); } bool ispow2(int i) { return i && (i & -i) == i; } int in() { int x; cin >> x; return x; } ll lin() { unsigned long long x; cin >> x; return x; } long long sqrtll(long long x) { assert(x >= 0); long long rev = sqrt(x); while(rev * rev > x) --rev; while((rev+1) * (rev+1)<=x) ++rev; return rev; } int logN(long long n){ int ret=1; while((1LL<<ret)<n)ret++; return ret; } const double PI=3.1415926535897932384626433832795028841971; const ll MOD = 998244353; const int INFI = numeric_limits<int>::max() / 2; const long long INFL = numeric_limits<long long>::max() / 2; template<class T> void debug(vector<T> a){ rep(i,0,(int)a.size()){ cout<<a[i]<<' '; } cout<<endl; return; } template<typename T> bool isPalin(T s){ rep(i,0,s.size()){ if(s[i]!=s[s.size()-i-1])return false; } return true; } template <std::uint_fast64_t Modulus> class modint { using u64 = std::uint_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {} constexpr u64 &val() noexcept { return a; } constexpr const u64 &val() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } friend bool operator==(const modint& a,const modint& b) { return a.val()==b.val(); } friend bool operator!=(const modint& a,const modint& b) { return a.val()!=b.val(); } }; using mint9=modint<998244353>; using mint1=modint<1000000007>; constexpr pii dx4[4] = {pii{-1, 0}, pii{0, 1}, pii{1, 0}, pii{0, -1}}; constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}}; constexpr pii dx[8] = { {-1, 0}, {0, -1}}; #define el "\n" #define endl "\n" #define inf INFINITY #define fastio std::cin.sync_with_stdio(false);std::cin.tie(nullptr);cout<<fixed<<setprecision(16); template< typename T, typename F > struct SegmentTree { int n, sz; vector< T > seg; const F f; const T ti; SegmentTree() = default; explicit SegmentTree(int n, const F f, const T &ti) : n(n), f(f), ti(ti) { sz = 1; while(sz < n) sz <<= 1; seg.assign(2 * sz, ti); } explicit SegmentTree(const vector< T > &v, const F f, const T &ti) : SegmentTree((int) v.size(), f, ti) { build(v); } void build(const vector< T > &v) { assert(n == (int) v.size()); for(int k = 0; k < n; k++) seg[k + sz] = v[k]; for(int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } void set(int k, const T &x) { k += sz; seg[k] = x; while(k >>= 1) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } T get(int k) const { return seg[k + sz]; } T operator[](const int &k) const { return get(k); } void apply(int k, const T &x) { k += sz; seg[k] = f(seg[k], x); while(k >>= 1) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } T prod(int l, int r) const { T L = ti, R = ti; for(l += sz, r += sz; l < r; l >>= 1, r >>= 1) { if(l & 1) L = f(L, seg[l++]); if(r & 1) R = f(seg[--r], R); } return f(L, R); } T all_prod() const { return seg[1]; } template< typename C > int find_first(int l, const C &check) const { if(l >= n) return n; l += sz; T sum = ti; do { while((l & 1) == 0) l >>= 1; if(check(f(sum, seg[l]))){ while(l < sz) { l <<= 1; auto nxt = f(sum, seg[l]); if(not check(nxt)) { sum = nxt; l++; } } return l + 1 - sz; } sum = f(sum, seg[l++]); } while((l & -l) != l); return n; } template< typename C > int find_last(int r, const C &check) const { if(r <= 0) return -1; r += sz; T sum = ti; do { r--; while(r > 1 and (r & 1)) r >>= 1; if(check(f(seg[r], sum))) { while(r < sz) { r = (r << 1) + 1; auto nxt = f(seg[r], sum); if(not check(nxt)) { sum = nxt; r--; } } return r - sz; } sum = f(seg[r], sum); } while((r & -r) != r); return -1; } }; template< typename T, typename F > SegmentTree< T, F > get_segment_tree(int N, const F &f, const T &ti) { return SegmentTree<T,F>{N, f, ti}; } template< typename T, typename F > SegmentTree< T, F > get_segment_tree(const vector< T > &v, const F &f, const T &ti) { return SegmentTree<T,F>{v, f, ti}; } int main(){ fastio; INT(n); vec(int,x,n); vec(int,y,n); rep(i,0,n)cin>>x[i]>>y[i]; zip(y); double p,q,r,s; map<int,int> xmp,ymp; map<int,int> za; rep(i,0,n){ xmp[x[i]]++; ymp[y[i]]++; } rep(i,0,n){ xmp[x[i]]--; ymp[y[i]]--; r+=(n-1-i)-xmp[x[i]]; s+=(n-1-i)-ymp[y[i]]; } auto seg=get_segment_tree(300000,[](int a,int b){return a+b;},0); vector<pii> xy(n); rep(i,0,n)xy[i]=pii(x[i],y[i]); sort(all(xy)); rep(i,0,n){ queue<int> que;que.push(i); //p+=seg.prod(0,xy[i].ss); //q+=seg.prod(xy[i].ss+1,300000); while(i+1<n&&xy[i].ff==xy[i+1].ff){ i++; //p+=seg.prod(0,xy[i].ss); //q+=seg.prod(xy[i].ss+1,300000); que.push(i); } while(!que.empty()){ int j=que.front();que.pop(); seg.apply(xy[j].ss,1); } } rep(i,0,n){ seg.apply(xy[i].ss,-1); queue<int> que;que.push(i); while(i+1<n&&xy[i].ff==xy[i+1].ff){ i++; seg.apply(xy[i].ss,-1); que.push(i); } while(!que.empty()){ int j=que.front();que.pop(); q+=seg.prod(0,xy[j].ss); p+=seg.prod(xy[j].ss+1,300000); } } cout<<(p-q)/sqrt(r*s)<<el; return 0; } /* */