結果
問題 | No.2873 Kendall's Tau |
ユーザー | PNJ |
提出日時 | 2024-09-06 23:27:32 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,427 bytes |
コンパイル時間 | 307 ms |
コンパイル使用メモリ | 82,204 KB |
実行使用メモリ | 231,368 KB |
最終ジャッジ日時 | 2024-09-06 23:28:08 |
合計ジャッジ時間 | 24,556 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 64 ms
68,268 KB |
testcase_02 | AC | 63 ms
68,516 KB |
testcase_03 | AC | 65 ms
69,780 KB |
testcase_04 | AC | 64 ms
69,876 KB |
testcase_05 | AC | 63 ms
68,708 KB |
testcase_06 | WA | - |
testcase_07 | AC | 1,332 ms
190,564 KB |
testcase_08 | WA | - |
testcase_09 | AC | 1,327 ms
188,372 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 1,413 ms
200,900 KB |
testcase_13 | AC | 475 ms
112,116 KB |
testcase_14 | AC | 1,140 ms
195,972 KB |
testcase_15 | AC | 353 ms
102,328 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | AC | 992 ms
169,568 KB |
testcase_20 | AC | 367 ms
101,396 KB |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | AC | 258 ms
85,692 KB |
testcase_25 | AC | 349 ms
99,328 KB |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 1,196 ms
198,588 KB |
testcase_29 | WA | - |
testcase_30 | AC | 320 ms
91,872 KB |
testcase_31 | AC | 413 ms
104,264 KB |
testcase_32 | WA | - |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) n = self.size = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a, b, i = self._position(x) a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b+1] = [a[:mid], a[mid:]] def _pop(self, a: List[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans N = int(input()) P,Q,R,S = 0,0,0,0 Z = [] S = set() Y = SortedMultiset() for _ in range(N): x,y = map(int,input().split()) Z.append((x,y)) S.add(x) S.add(y) Y.add(y) S = list(S) S.sort() n = len(S) d = {} for i in range(n): d[S[i]] = i G = [[] for i in range(n)] for x,y in Z: G[d[x]].append(y) M = N for i in range(n): m = len(G[i]) M -= m R += m * (N - m) for y in G[i]: Y.discard(y) for y in G[i]: Q += Y.index(y) P += (M - Y.index_right(y)) S = 0 G = [0 for i in range(n)] for x,y in Z: G[d[y]] += 1 for g in G: S += (N - g) * g P = (P - Q) * 2 Q = R * S ans = P * P / Q if P < 0: ans = -ans print(ans ** 0.5)