結果
| 問題 |
No.2891 Mint
|
| コンテスト | |
| ユーザー |
nono00
|
| 提出日時 | 2024-09-13 22:51:06 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 718 ms / 2,000 ms |
| コード長 | 15,523 bytes |
| コンパイル時間 | 2,946 ms |
| コンパイル使用メモリ | 251,520 KB |
| 実行使用メモリ | 53,784 KB |
| 最終ジャッジ日時 | 2024-09-13 22:51:22 |
| 合計ジャッジ時間 | 14,956 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 54 |
ソースコード
#include <bits/stdc++.h>
#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1
#include <iostream>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m): _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a: bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) { return false; }
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) { x /= i; }
}
}
if (x > 1) { divs[cnt++] = x; }
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
#endif
#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1
#include <numeric>
#include <type_traits>
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value || is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T>
using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
#endif
namespace internal {
struct modint_base {};
struct static_modint_base: modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint: internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint(): _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }
friend std::istream& operator>>(std::istream& is, mint& v) {
long long temp;
is >> temp;
v = mint(temp);
return is;
}
friend std::ostream& operator<<(std::ostream& os, const mint& v) { return os << v.val(); }
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint: internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) { bt = internal::barrett(m); }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint(): _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }
friend std::istream& operator>>(std::istream& is, mint& v) {
long long temp;
is >> temp;
v = mint(temp);
return is;
}
friend std::ostream& operator<<(std::ostream& os, const mint& v) { return os << v.val(); }
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint: public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>>: public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
#endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using ull = unsigned long long;
template <class T>
using max_heap = priority_queue<T>;
template <class T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
#define rep(i, l, r) for (ll i = (l); i < (r); i++)
#define rrep(i, r, l) for (ll i = (r); i-- > (l);)
#define all(x) begin(x), end(x)
template <class T>
bool chmin(T& lhs, T rhs) {
return lhs > rhs ? (lhs = rhs, true) : false;
}
template <class T>
bool chmax(T& lhs, T rhs) {
return lhs < rhs ? (lhs = rhs, true) : false;
}
struct IOIO {
IOIO() { cin.tie(0)->sync_with_stdio(0); }
} ioio;
template <class S, class T>
ostream& operator<<(ostream& os, const pair<S, T>& p) {
os << '(' << p.first << ", " << p.second << ')';
return os;
}
template <class T>
ostream& operator<<(ostream& os, const vector<T>& vs) {
os << '{';
rep(i, 0, (int)vs.size()) os << vs[i] << (i + 1 == (int)vs.size() ? "" : ", ");
os << '}';
return os;
}
template <class T>
ostream& operator<<(ostream& os, const set<T>& vs) {
os << '{';
for (auto it = vs.begin(); it != vs.end(); it++) {
if (it != vs.begin()) { os << ", "; }
os << *it;
}
os << '}';
return os;
}
template <class T, class U>
ostream& operator<<(ostream& os, const map<T, U>& vs) {
os << '{';
for (auto it = vs.begin(); it != vs.end(); it++) {
if (it != vs.begin()) { os << ", "; }
os << *it;
}
os << '}';
return os;
}
#ifdef DEBUG
void dump_func() { cerr << endl; }
template <class Head, class... Tail>
void dump_func(Head&& head, Tail&&... tail) {
cerr << head;
if (sizeof...(Tail) > 0) { cerr << ", "; }
dump_func(std::move(tail)...);
}
#define dump(...) cerr << "[" + string(#__VA_ARGS__) + "] ", dump_func(__VA_ARGS__)
#else
#define dump(...) static_cast<int>(0)
#endif
// https://ei1333.github.io/luzhiled/snippets/math/quotient-range.html
template <typename T>
vector<pair<pair<T, T>, T>> quotient_range(T N) {
T M;
vector<pair<pair<T, T>, T>> ret;
for (M = 1; M * M <= N; M++) { ret.emplace_back(make_pair(M, M), N / M); }
for (T i = M; i >= 1; i--) {
T L = N / (i + 1) + 1;
T R = N / i;
if (L <= R && ret.back().first.second < L) ret.emplace_back(make_pair(L, R), N / L);
}
return ret;
}
int main() {
using mint = modint998244353;
auto F_ = [&](ll x) { return mint(x) * (x + 1) / 2; };
auto F = [&](ll l, ll r) { return F_(r - 1) - F_(l - 1); };
ll n, m;
cin >> n >> m;
mint ans = 0;
for (auto [rng, q]: quotient_range<ll>(m)) {
auto [l, r] = rng;
chmin(r, n);
r++;
ans += mint(m) * (r - l);
ans -= mint(q) * F(l, r);
if (r == n + 1) break;
}
if (n > m) ans += mint(m) * (n - m);
cout << ans << '\n';
}
nono00