結果

問題 No.1861 Required Number
ユーザー ecotteaecottea
提出日時 2024-09-22 02:12:33
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 11,942 bytes
コンパイル時間 6,302 ms
コンパイル使用メモリ 313,056 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-22 02:12:49
合計ジャッジ時間 12,684 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14 WA * 28 RE * 4
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// QCFium
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9e18int -2^31 2^31 = 2e9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = static_modint<1234567891>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE MLE
#endif
//
/*
* SMFPS() : O(1)
* f(z) = 0
*
* SMFPS(mint c0) : O(1)
* f(z) = c0
*
* SMFPS(vector<pim> dcs) : O(n)
* n (, )
*
* c + f, f + c : O(|f|), f + g : O(|f| + |g|)
* f - c, c - f : O(|f|), f - g : O(|f| + |g|)
* c * f, f * c, -f : O(|f|)
*
*
* f * g : O(|f| |g| log(|f| |g|))
*
*
* f >> d, f << d : O(|f|)
* d []
* z^d z^d
*
* shrink() : O(|f|)
* 0
*/
struct SMFPS {
// 0
int n;
// (, )
vector<pim> c;
//
SMFPS() : n(0) {}
SMFPS(mint c0) : n(1), c({ { 0, c0 } }) {}
SMFPS(const vector<pim>& c) : n(sz(c)), c(c) {}
//
SMFPS(const SMFPS& f) = default;
SMFPS& operator=(const SMFPS& f) = default;
void puch_back(const pim& dc) { c.emplace_back(dc); ++n; }
void puch_back(int deg, mint coef) { c.emplace_back(deg, coef); ++n; }
void pop_back() { c.pop_back(); --n; }
[[nodiscard]] pim back() { return c.back(); }
//
[[nodiscard]] bool operator==(const SMFPS& g) const { return c == g.c; }
[[nodiscard]] bool operator!=(const SMFPS& g) const { return !(*this == g); }
//
inline pim const& operator[](int i) const { return c[i]; }
inline pim& operator[](int i) { return c[i]; }
//
[[nodiscard]] int size() const { return n; }
//
[[nodiscard]] SMFPS operator+(const SMFPS& g) const {
// verify : https://yukicoder.me/problems/no/2660
SMFPS res;
int i = 0, j = 0;
while (i < n || j < g.n) {
if (j == g.n || (i < n && c[i].first < g[j].first)) {
res.puch_back(c[i]);
++i;
}
else if (i == n || c[i].first > g[j].first) {
res.puch_back(g[j]);
++j;
}
else {
res.puch_back(c[i].first, c[i].second + g[j].second);
++i; ++j;
}
}
return res;
}
SMFPS& operator+=(const SMFPS& g) { *this = *this + g; return *this; }
//
[[nodiscard]] SMFPS operator-(const SMFPS& g) const {
SMFPS res;
int i = 0, j = 0;
while (i < n || j < g.n) {
if (j == g.n || (i < n && c[i].first < g[j].first)) {
res.puch_back(c[i]);
++i;
}
else if (i == n || c[i].first > g[j].first) {
res.puch_back(g[j].first, -g[j].second);
++j;
}
else {
res.puch_back(c[i].first, c[i].second - g[j].second);
++i; ++j;
}
}
return res;
}
SMFPS& operator-=(const SMFPS& g) { *this = *this - g; return *this; }
//
SMFPS& operator*=(const mint& c0) {
// verify : https://judge.yosupo.jp/problem/sqrt_of_formal_power_series_sparse
repea(p, c) p.second *= c0; return *this;
}
[[nodiscard]] SMFPS operator*(const mint& c0) const { return SMFPS(*this) *= c0; }
friend SMFPS operator*(const mint& c0, const SMFPS& f) { return f * c0; }
[[nodiscard]] SMFPS operator-() const { return SMFPS(*this) *= -1; }
//
SMFPS& operator*=(const SMFPS& g) {
// verify : https://yukicoder.me/problems/no/2660
vector<pim> tmp(n * g.n);
rep(i, n) rep(j, g.n) {
tmp[i * g.n + j] = { c[i].first + g[j].first, c[i].second * g[j].second };
}
sort(all(tmp), [](const pim& l, const pim& r) {
return l.first < r.first;
});
tmp.emplace_back(INF, 0);
n = 0; c.clear(); mint acc = 0;
rep(i, sz(tmp) - 1) {
if (tmp[i].first == tmp[i + 1].first) acc += tmp[i].second;
else {
if (acc + tmp[i].second != 0) {
puch_back(tmp[i].first, acc + tmp[i].second);
}
acc = 0;
}
}
return *this;
}
[[nodiscard]] SMFPS operator*(const SMFPS& g) const { return SMFPS(*this) *= g; }
// z^d
SMFPS& operator>>=(int d) {
repea(tmp, c) tmp.first += d;
return *this;
}
[[nodiscard]] SMFPS operator>>(int d) const { return SMFPS(*this) >>= d; }
// z^d
[[nodiscard]] SMFPS operator<<(int d) const {
// verify : https://judge.yosupo.jp/problem/sqrt_of_formal_power_series_sparse
SMFPS res;
for (auto [deg, coef] : c) {
if (deg >= d) res.puch_back(deg - d, coef);
}
return res;
}
SMFPS& operator<<=(int d) { *this = *this << d; return *this; }
// 0
SMFPS& shrink() {
// verify : https://www.codechef.com/problems/RANDCOLORING
int l = 0; int deg = -1; mint acc = 0;
rep(i, n) {
auto& [deg, coef] = c[i];
acc += coef;
if (i == n - 1 || c[i + 1].first != deg) {
if (acc != 0) {
c[l] = { deg, acc };
acc = 0;
l++;
}
}
}
n = l;
c.resize(l);
return *this;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const SMFPS& f) {
rep(i, sz(f)) {
os << f[i].second << "z^" << f[i].first << (i < sz(f) - 1 ? " + " : "");
}
return os;
}
#endif
};
//O(n |f|)
/*
* a[0..n) A(z) [z^[0..n)] A(z)f(z)
*/
vm product_sfps(const vm& a, const SMFPS& f) {
// verify : https://www.codechef.com/problems/RANDCOLORING
int n = sz(a);
vm res(n);
// DP
rep(i, n) {
for (auto& [deg, coef] : f.c) {
if (i + deg >= n) break;
res[i + deg] += a[i] * coef;
}
}
return res;
}
//O(n |f|)
/*
* a[0..n) A(z) [z^[0..n)] A(z)/f(z)
*/
vm divide_sfps(const vm& a, const SMFPS& f) {
// verify : https://www.codechef.com/problems/RANDCOLORING
int n = sz(a), K = sz(f);
Assert(K > 0);
auto [d_min, f0] = f[0];
Assert(f0 != 0);
mint f0_inv = f0.inv();
vm res(n);
rep(i, n - d_min) res[i] = a[i + d_min];
// DP
rep(i, n) {
res[i] *= f0_inv;
repi(k, 1, K - 1) {
auto [deg, coef] = f[k];
deg -= d_min;
if (i + deg >= n) break;
res[i + deg] -= res[i] * coef;
}
}
return res;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, k;
cin >> n >> k;
vi a(n);
cin >> a;
int m = 1000;
vm f(m + 1);
f[0] = 1;
rep(i, n) {
f = product_sfps(f, SMFPS({ {0, 1}, {a[i], 1} }));
}
dump(f);
if (f[k] == 0) EXIT(-1);
int res = 0;
rep(i, n) {
auto g = divide_sfps(f, SMFPS({ {0, 1}, {a[i], 1} }));
if (g[k] == 0) res++;
}
EXIT(res);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0