結果

問題 No.1737 One to N
ユーザー Mottchan
提出日時 2024-09-28 13:55:24
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 63 ms / 2,000 ms
コード長 4,926 bytes
コンパイル時間 213 ms
コンパイル使用メモリ 82,372 KB
実行使用メモリ 67,436 KB
最終ジャッジ日時 2024-09-28 13:55:28
合計ジャッジ時間 3,105 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
input = sys.stdin.readline
sys.set_int_max_str_digits(0)
from collections import defaultdict, deque, Counter
from heapq import heappop, heappush
from bisect import bisect_left, bisect_right
## gcd(x, y):, lcm(x, y):, factorial(n):n!, prem(n, k):nPk(n, k), comb(n, r):nCr
from math import gcd, lcm, factorial, perm, comb
#0~9permutationsconbinations,Nproduct
from itertools import product, permutations, combinations, accumulate
from functools import lru_cache #@lru_cache(maxsize=128)
import operator
from string import ascii_uppercase, ascii_lowercase, digits # (), (),
MOD = 998244353
def II():return int(input())
def LI():return list(input())
def LMI():return list(map(int, input().split()))
def LMS():return list(map(str, input().split()))
def LLMI(x):return [list(map(int, input().split())) for _ in range(x)]
def LLMS(x):return [list(map(str, input().split())) for _ in range(x)]
def CUM(x:list) -> list:
'''
func:
operator.mul:
operator.sub:
max:
min:
initial:, Nonex[0]
'''
return list(accumulate(x, func=None, initial=0))
def yn(tf:bool):
if tf:
return print('YES')
else:
return print('No')
class UnionFind():
def __init__(self, n):
self.n = n
self.parents = [-1] * n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return len(self.roots())
def group(self):
group_members = defaultdict(list)
for member in range(self.n):
group_members[self.find(member)].append(member)
return group_members
def __str__(self):
return ''.join(f'{r}: {m}' for r, m in self.group().items())
def inverse_element(num:int):
'''
ax ≡ 1 (mod p)xfetmat
a * a^(p-2) ≡ 1 (mod p)
a^(p-2) (mod p)
'''
return pow(num, MOD-2, MOD)
def make_graph(n:int, lmi:list, idx_0:bool):
graph = [[] for _ in range(n)]
for i in range(len(lmi)):
a, b = lmi[i]
if idx_0:
a -= 1
b -= 1
# 1append
graph[a].append(b)
graph[b].append(a)
return graph
def dfs(n:int, graph:list[list[int]], s:int = 0, g:int = None):
'''
s:start0
g:goal
'''
d = deque([(s, 0)])
TF = [False] * n
TF[s] = True
while d:
crr, cnt = d.popleft()
print(crr, cnt)
if g is not None and crr == g:
## g
return True
for nxt in graph[crr]:
if TF[nxt]:continue
d.append((nxt, cnt+1))
TF[nxt] = True
else:
return False
def dijkstra(n:int, graph:list[list[int, int]], s:int = 0):
'''
s:start0
'''
que = []
heappush(que, (0, s))
TF = [False] * n
#
ans = [0] * n
while que:
cnt, crr = heappop(que)
if TF[crr]: continue
#
TF[crr] = True
ans[crr] = cnt
for nxt, val in graph[crr]:
#
if TF[nxt]:continue
heappush(que, (cnt+val, nxt))
else:
return ans
def prime_factorize(n):
a = []
while n % 2 == 0:
a.append(2)
n //= 2
f = 3
while f * f <= n:
if n % f == 0:
a.append(f)
n //= f
else:
f += 2
if n != 1:
a.append(n)
return a
def execute():
print(sum(prime_factorize(II())))
if __name__ == "__main__":
T = 1
for _ in range(T):
execute()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0