結果
問題 | No.1626 三角形の構築 |
ユーザー | t9unkubj |
提出日時 | 2024-10-01 21:47:49 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 19,851 bytes |
コンパイル時間 | 6,946 ms |
コンパイル使用メモリ | 321,224 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-10-01 21:47:58 |
合計ジャッジ時間 | 7,956 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 8 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | AC | 8 ms
5,248 KB |
testcase_11 | WA | - |
testcase_12 | AC | 4 ms
5,248 KB |
testcase_13 | AC | 5 ms
5,248 KB |
testcase_14 | AC | 7 ms
5,248 KB |
testcase_15 | AC | 5 ms
5,248 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | AC | 6 ms
5,248 KB |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | AC | 10 ms
5,248 KB |
testcase_24 | WA | - |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | WA | - |
ソースコード
#ifdef t9unkubj #include"template.h" //#include"template_no_debug.h" #else #undef _GLIBCXX_DEBUG #pragma GCC optimize("O3") #define dbg(...) 199958 using namespace std; #include<bits/stdc++.h> using uint=unsigned; using ll=long long; using ull=unsigned long long; using ld=long double; using pii=pair<int,int>; using pll=pair<ll,ll>; template<class T>using vc=vector<T>; template<class T>using vvc=vc<vc<T>>; template<class T>using vvvc=vvc<vc<T>>; using vi=vc<int>; using vvi=vc<vi>; using vvvi=vc<vvi>; using vl=vc<ll>; using vvl=vc<vl>; using vvvl=vc<vvl>; template<class T>using smpq=priority_queue<T,vector<T>,greater<T>>; template<class T>using bipq=priority_queue<T>; #define rep(i,n) for(ll i=0;i<(ll)(n);i++) #define REP(i,j,n) for(ll i=(j);i<(ll)(n);i++) #define DREP(i,n,m) for(ll i=(n);i>=(m);i--) #define drep(i,n) for(ll i=((n)-1);i>=0;i--) #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define mp make_pair #define pb push_back #define eb emplace_back #define fi first #define se second #define is insert #define bg begin() #define ed end() void scan(int&a) { cin >> a; } void scan(ll&a) { cin >> a; } void scan(string&a) { cin >> a; } void scan(char&a) { cin >> a; } void scan(uint&a) { cin >> a; } void scan(ull&a) { cin >> a; } void scan(bool&a) { cin >> a; } void scan(ld&a){ cin>> a;} template<class T> void scan(vector<T>&a) { for(auto&x:a) scan(x); } void read() {} template<class Head, class... Tail> void read(Head&head, Tail&... tail) { scan(head); read(tail...); } #define INT(...) int __VA_ARGS__; read(__VA_ARGS__); #define LL(...) ll __VA_ARGS__; read(__VA_ARGS__); #define ULL(...) ull __VA_ARGS__; read(__VA_ARGS__); #define STR(...) string __VA_ARGS__; read(__VA_ARGS__); #define CHR(...) char __VA_ARGS__; read(__VA_ARGS__); #define DBL(...) double __VA_ARGS__; read(__VA_ARGS__); #define LD(...) ld __VA_ARGS__; read(__VA_ARGS__); #define VC(type, name, ...) vector<type> name(__VA_ARGS__); read(name); #define VVC(type, name, size, ...) vector<vector<type>> name(size, vector<type>(__VA_ARGS__)); read(name); void print(int a) { cout << a; } void print(ll a) { cout << a; } void print(string a) { cout << a; } void print(char a) { cout << a; } void print(uint a) { cout << a; } void print(bool a) { cout << a; } void print(ull a) { cout << a; } void print(double a) { cout << a; } void print(ld a){ cout<< a; } template<class T> void print(vector<T>a) { for(int i=0;i<(int)a.size();i++){if(i)cout<<" ";print(a[i]);}cout<<endl;} void PRT() { cout <<endl; return ; } template<class T> void PRT(T a) { print(a); cout <<endl; return; } template<class Head, class... Tail> void PRT(Head head, Tail ... tail) { print(head); cout << " "; PRT(tail...); return; } template<class T,class F> bool chmin(T &x, F y){ if(x>y){ x=y; return true; } return false; } template<class T, class F> bool chmax(T &x, F y){ if(x<y){ x=y; return true; } return false; } void YesNo(bool b){ cout<<(b?"Yes":"No")<<endl; } void Yes(){ cout<<"Yes"<<endl; } void No(){ cout<<"No"<<endl; } template<class T> int popcount(T n){ return __builtin_popcountll(n); } template<class T> T sum(vc<T>&a){ return accumulate(all(a),T(0)); } template<class T> T max(vc<T>&a){ return *max_element(all(a)); } template<class T> T min(vc<T>&a){ return *min_element(all(a)); } template<class T> void unique(vc<T>&a){ a.erase(unique(all(a)),a.end()); } vvi readgraph(int n,int m,int off = -1){ vvi g(n); rep(i, m){ int u,v; cin>>u>>v; u+=off,v+=off; g[u].push_back(v); g[v].push_back(u); } return g; } vvi readtree(int n,int off=-1){ return readgraph(n,n-1,off); } template<class T> vc<T> presum(vc<T> &a){ vc<T> ret(a.size()+1); rep(i,a.size())ret[i+1]=ret[i]+a[i]; return ret; } template<class T, class F> vc<T> &operator+=(vc<T> &a,F b){ for (auto&v:a)v += b; return a; } template<class T, class F> vc<T> &operator-=(vc<T>&a,F b){ for (auto&v:a)v-=b; return a; } template<class T, class F> vc<T> &operator*=(vc<T>&a,F b){ for (auto&v:a)v*=b; return a; } #endif double pass_time=0; #line 2 "prime/fast-factorize.hpp" #include <cstdint> #include <numeric> #include <vector> using namespace std; #line 2 "internal/internal-math.hpp" #line 2 "internal/internal-type-traits.hpp" #include <type_traits> using namespace std; namespace internal { template <typename T> using is_broadly_integral = typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>, true_type, false_type>::type; template <typename T> using is_broadly_signed = typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>, true_type, false_type>::type; template <typename T> using is_broadly_unsigned = typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>, true_type, false_type>::type; #define ENABLE_VALUE(x) \ template <typename T> \ constexpr bool x##_v = x<T>::value; ENABLE_VALUE(is_broadly_integral); ENABLE_VALUE(is_broadly_signed); ENABLE_VALUE(is_broadly_unsigned); #undef ENABLE_VALUE #define ENABLE_HAS_TYPE(var) \ template <class, class = void> \ struct has_##var : false_type {}; \ template <class T> \ struct has_##var<T, void_t<typename T::var>> : true_type {}; \ template <class T> \ constexpr auto has_##var##_v = has_##var<T>::value; #define ENABLE_HAS_VAR(var) \ template <class, class = void> \ struct has_##var : false_type {}; \ template <class T> \ struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \ template <class T> \ constexpr auto has_##var##_v = has_##var<T>::value; } // namespace internal #line 4 "internal/internal-math.hpp" namespace internal { #include <cassert> #include <utility> #line 10 "internal/internal-math.hpp" using namespace std; // a mod p template <typename T> T safe_mod(T a, T p) { a %= p; if constexpr (is_broadly_signed_v<T>) { if (a < 0) a += p; } return a; } // 返り値:pair(g, x) // s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g template <typename T> pair<T, T> inv_gcd(T a, T p) { static_assert(is_broadly_signed_v<T>); a = safe_mod(a, p); if (a == 0) return {p, 0}; T b = p, x = 1, y = 0; while (a != 0) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } if (y < 0) y += p / b; return {b, y}; } // 返り値 : a^{-1} mod p // gcd(a, p) != 1 が必要 template <typename T> T inv(T a, T p) { static_assert(is_broadly_signed_v<T>); a = safe_mod(a, p); T b = p, x = 1, y = 0; while (a != 0) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } assert(b == 1); return y < 0 ? y + p : y; } // T : 底の型 // U : T*T がオーバーフローしない かつ 指数の型 template <typename T, typename U> T modpow(T a, U n, T p) { a = safe_mod(a, p); T ret = 1 % p; while (n != 0) { if (n % 2 == 1) ret = U(ret) * a % p; a = U(a) * a % p; n /= 2; } return ret; } // 返り値 : pair(rem, mod) // 解なしのときは {0, 0} を返す template <typename T> pair<T, T> crt(const vector<T>& r, const vector<T>& m) { static_assert(is_broadly_signed_v<T>); assert(r.size() == m.size()); int n = int(r.size()); T r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); T r1 = safe_mod(r[i], m[i]), m1 = m[i]; if (m0 < m1) swap(r0, r1), swap(m0, m1); if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } auto [g, im] = inv_gcd(m0, m1); T u1 = m1 / g; if ((r1 - r0) % g) return {0, 0}; T x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; } return {r0, m0}; } } // namespace internal #line 2 "misc/rng.hpp" #line 2 "internal/internal-seed.hpp" #include <chrono> using namespace std; namespace internal { unsigned long long non_deterministic_seed() { unsigned long long m = chrono::duration_cast<chrono::nanoseconds>( chrono::high_resolution_clock::now().time_since_epoch()) .count(); m ^= 9845834732710364265uLL; m ^= m << 24, m ^= m >> 31, m ^= m << 35; return m; } unsigned long long deterministic_seed() { return 88172645463325252UL; } // 64 bit の seed 値を生成 (手元では seed 固定) // 連続で呼び出すと同じ値が何度も返ってくるので注意 // #define RANDOMIZED_SEED するとシードがランダムになる unsigned long long seed() { #if defined(NyaanLocal) && !defined(RANDOMIZED_SEED) return deterministic_seed(); #else return non_deterministic_seed(); #endif } } // namespace internal #line 4 "misc/rng.hpp" namespace my_rand { using i64 = long long; using u64 = unsigned long long; // [0, 2^64 - 1) u64 rng() { static u64 _x = internal::seed(); return _x ^= _x << 7, _x ^= _x >> 9; } // [l, r] i64 rng(i64 l, i64 r) { assert(l <= r); return l + rng() % u64(r - l + 1); } // [l, r) i64 randint(i64 l, i64 r) { assert(l < r); return l + rng() % u64(r - l); } // choose n numbers from [l, r) without overlapping vector<i64> randset(i64 l, i64 r, i64 n) { assert(l <= r && n <= r - l); unordered_set<i64> s; for (i64 i = n; i; --i) { i64 m = randint(l, r + 1 - i); if (s.find(m) != s.end()) m = r - i; s.insert(m); } vector<i64> ret; for (auto& x : s) ret.push_back(x); sort(begin(ret), end(ret)); return ret; } // [0.0, 1.0) double rnd() { return rng() * 5.42101086242752217004e-20; } // [l, r) double rnd(double l, double r) { assert(l < r); return l + rnd() * (r - l); } template <typename T> void randshf(vector<T>& v) { int n = v.size(); for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]); } } // namespace my_rand using my_rand::randint; using my_rand::randset; using my_rand::randshf; using my_rand::rnd; using my_rand::rng; #line 2 "modint/arbitrary-montgomery-modint.hpp" #include <iostream> using namespace std; template <typename Int, typename UInt, typename Long, typename ULong, int id> struct ArbitraryLazyMontgomeryModIntBase { using mint = ArbitraryLazyMontgomeryModIntBase; inline static UInt mod; inline static UInt r; inline static UInt n2; static constexpr int bit_length = sizeof(UInt) * 8; static UInt get_r() { UInt ret = mod; while (mod * ret != 1) ret *= UInt(2) - mod * ret; return ret; } static void set_mod(UInt m) { assert(m < (UInt(1u) << (bit_length - 2))); assert((m & 1) == 1); mod = m, n2 = -ULong(m) % m, r = get_r(); } UInt a; ArbitraryLazyMontgomeryModIntBase() : a(0) {} ArbitraryLazyMontgomeryModIntBase(const Long &b) : a(reduce(ULong(b % mod + mod) * n2)){}; static UInt reduce(const ULong &b) { return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length; } mint &operator+=(const mint &b) { if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (Int(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(ULong(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint(0) - mint(*this); } mint operator+() const { return mint(*this); } mint pow(ULong n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul, n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { Long t; is >> t; b = ArbitraryLazyMontgomeryModIntBase(t); return (is); } mint inverse() const { Int x = get(), y = get_mod(), u = 1, v = 0; while (y > 0) { Int t = x / y; swap(x -= t * y, y); swap(u -= t * v, v); } return mint{u}; } UInt get() const { UInt ret = reduce(a); return ret >= mod ? ret - mod : ret; } static UInt get_mod() { return mod; } }; // id に適当な乱数を割り当てて使う template <int id> using ArbitraryLazyMontgomeryModInt = ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long, unsigned long long, id>; template <int id> using ArbitraryLazyMontgomeryModInt64bit = ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t, __uint128_t, id>; #line 2 "prime/miller-rabin.hpp" #line 4 "prime/miller-rabin.hpp" using namespace std; #line 8 "prime/miller-rabin.hpp" namespace fast_factorize { template <typename T, typename U> bool miller_rabin(const T& n, vector<T> ws) { if (n <= 2) return n == 2; if (n % 2 == 0) return false; T d = n - 1; while (d % 2 == 0) d /= 2; U e = 1, rev = n - 1; for (T w : ws) { if (w % n == 0) continue; T t = d; U y = internal::modpow<T, U>(w, t, n); while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2; if (y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_u64(unsigned long long n) { return miller_rabin<unsigned long long, __uint128_t>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } template <typename mint> bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) { if (n <= 2) return n == 2; if (n % 2 == 0) return false; if (mint::get_mod() != n) mint::set_mod(n); unsigned long long d = n - 1; while (~d & 1) d >>= 1; mint e = 1, rev = n - 1; for (unsigned long long w : ws) { if (w % n == 0) continue; unsigned long long t = d; mint y = mint(w).pow(t); while (t != n - 1 && y != e && y != rev) y *= y, t *= 2; if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(unsigned long long n) { using mint32 = ArbitraryLazyMontgomeryModInt<96229631>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>; if (n <= 2) return n == 2; if (n % 2 == 0) return false; if (n < (1uLL << 30)) { return miller_rabin<mint32>(n, {2, 7, 61}); } else if (n < (1uLL << 62)) { return miller_rabin<mint64>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } else { return miller_rabin_u64(n); } } } // namespace fast_factorize using fast_factorize::is_prime; /** * @brief Miller-Rabin primality test */ #line 12 "prime/fast-factorize.hpp" namespace fast_factorize { using u64 = uint64_t; template <typename mint, typename T> T pollard_rho(T n) { if (~n & 1) return 2; if (is_prime(n)) return n; if (mint::get_mod() != n) mint::set_mod(n); mint R, one = 1; auto f = [&](mint x) { return x * x + R; }; auto rnd_ = [&]() { return rng() % (n - 2) + 2; }; while (1) { mint x, y, ys, q = one; R = rnd_(), y = rnd_(); T g = 1; constexpr int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; ++i) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y)); g = gcd(q.get(), n); } } if (g == n) do g = gcd((x - (ys = f(ys))).get(), n); while (g == 1); if (g != n) return g; } exit(1); } using i64 = long long; vector<i64> inner_factorize(u64 n) { using mint32 = ArbitraryLazyMontgomeryModInt<452288976>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>; if (n <= 1) return {}; u64 p; if (n <= (1LL << 30)) { p = pollard_rho<mint32, uint32_t>(n); } else if (n <= (1LL << 62)) { p = pollard_rho<mint64, uint64_t>(n); } else { exit(1); } if (p == n) return {i64(p)}; auto l = inner_factorize(p); auto r = inner_factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector<i64> factorize(u64 n) { auto ret = inner_factorize(n); sort(begin(ret), end(ret)); return ret; } map<i64, i64> factor_count(u64 n) { map<i64, i64> mp; for (auto &x : factorize(n)) mp[x]++; return mp; } vector<i64> divisors(u64 n) { if (n == 0) return {}; vector<pair<i64, i64>> v; for (auto &p : factorize(n)) { if (v.empty() || v.back().first != p) { v.emplace_back(p, 1); } else { v.back().second++; } } vector<i64> ret; auto f = [&](auto rc, int i, i64 x) -> void { if (i == (int)v.size()) { ret.push_back(x); return; } rc(rc, i + 1, x); for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first); }; f(f, 0, 1); sort(begin(ret), end(ret)); return ret; } } // namespace fast_factorize using fast_factorize::divisors; using fast_factorize::factor_count; using fast_factorize::factorize; /** * @brief 高速素因数分解(Miller Rabin/Pollard's Rho) * @docs docs/prime/fast-factorize.md */ std::istream& operator>>(std::istream& is, __int128& num) { std::string input; is >> input; bool negative = false; num = 0; if (input[0] == '-') { negative = true; input = input.substr(1); } for (char c : input) { if (c >= '0' && c <= '9') { num = num * 10 + (c - '0'); } else { is.setstate(std::ios::failbit); return is; } } if (negative) { num = -num; } return is; } int ok(ll a,ll b,ll c){ return a>0&&b>0&&c>0&&a<b+c&&b<a+c&&c<a+b; } using bint=__int128; bint SQRT(bint a){ if(a<0)return -1; bint ac=0,wa=9e18; while(wa-ac>1){ bint wj=ac+wa>>1; if(wj*wj<=a)ac=wj; else wa=wj; } if(ac*ac==a)return ac; else return -1; } void solve(){ LL(s,t); if(t%2)return PRT(0); t/=2; s*=s; if(s%t)return PRT(0); s/=t; { set<array<ll,3>>st; auto res=divisors(s); for(auto&a:res){ bint up=bint(a)*a; dbg(bint(a-t)*(bint(a)*a*a-bint(a)*a*t+4*s),a,t); if(SQRT(bint(a-t)*(bint(a)*a*a-bint(a)*a*t+4*s))!=-1){ up+=SQRT(bint(a-t)*(bint(a)*a*a-bint(a)*a*t+4*s)); up-=bint(3)*a*t; up+=bint(2)*t*t; bint down=2*a-2*t; if(a!=t&&up%down==0){ bint b=-up/down; bint c=t*2-a-b; dbg(a,b,c); { vc<bint>vs{a,b,c}; sort(all(vs)); st.insert(array<ll,3>{ll(vs[0]),ll(vs[1]),ll(vs[2])}); } } } } cout<<st.size()<<endl; for(auto [x,y,z]:st){ PRT(x,y,z); } } } signed main(){ #ifdef t9unkubj freopen("input.txt", "r", stdin); freopen("output.txt", "w", stdout); #endif cin.tie(0)->sync_with_stdio(0); pass_time=clock(); int t=1; cin>>t; while(t--)solve(); pass_time=clock()-pass_time; dbg(pass_time/CLOCKS_PER_SEC); }