結果

問題 No.2913 二次元距離空間
ユーザー 👑 binapbinap
提出日時 2024-10-04 22:23:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 139 ms / 2,000 ms
コード長 4,666 bytes
コンパイル時間 4,413 ms
コンパイル使用メモリ 288,756 KB
実行使用メモリ 35,380 KB
最終ジャッジ日時 2024-10-04 22:24:06
合計ジャッジ時間 6,075 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 1 ms
6,820 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 2 ms
6,816 KB
testcase_14 AC 2 ms
6,820 KB
testcase_15 AC 3 ms
6,820 KB
testcase_16 AC 32 ms
20,600 KB
testcase_17 AC 42 ms
20,484 KB
testcase_18 AC 123 ms
33,828 KB
testcase_19 AC 139 ms
35,128 KB
testcase_20 AC 124 ms
33,328 KB
testcase_21 AC 41 ms
23,548 KB
testcase_22 AC 43 ms
23,064 KB
testcase_23 AC 132 ms
34,052 KB
testcase_24 AC 43 ms
24,512 KB
testcase_25 AC 126 ms
33,428 KB
testcase_26 AC 42 ms
23,712 KB
testcase_27 AC 139 ms
35,380 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;

template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}
template <int m> istream& operator>>(istream& is, static_modint<m>& a) {long long x; is >> x; a = x; return is;}
template <int m> istream& operator>>(istream& is, dynamic_modint<m>& a) {long long x; is >> x; a = x; return is;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : ""); return os;}
template<typename T> ostream& operator<<(ostream& os, const set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;}
template<typename T> ostream& operator<<(ostream& os, const unordered_set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;}
template<typename S, auto op, auto e> ostream& operator<<(ostream& os, const atcoder::segtree<S, op, e>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;}
template<typename S, auto op, auto e, typename F, auto mapping, auto composition, auto id> ostream& operator<<(ostream& os, const atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;}

template<typename T> void chmin(T& a, T b){a = min(a, b);}
template<typename T> void chmax(T& a, T b){a = max(a, b);}

const int INF = 1001001001;
using S = pair<int, int>;
S _INF(INF, INF);
S _ZERO(0, 0);
using F = pair<int, int>;
S apply(F f, S x){
	return S(x.first + f.first, x.second + f.second);
}

template<typename S, typename F>
struct Dijkstra{
	struct Edge{
		int from, to;
		F cost;
		Edge(int from, int to, F cost) : from(from), to(to), cost(cost) {};
	};
	int n, m;
	vector<bool> initialized;
	vector<Edge> E;
	vector<vector<int>> G;
	map<int, vector<S>> dist;
	map<int, vector<int>> idx;
	Dijkstra(int _n) : n(_n), m(0), initialized(n, false), G(n){}
	void add_edge(int from, int to, F cost){
		Edge e(from, to, cost);
		E.push_back(e);
		G[from].emplace_back(m);
		m++;
	}
	void calc(int s){
		initialized[s] = true;
		dist[s] = vector<S>(n, _INF);
		idx[s] = vector<int>(n, -1);
		priority_queue<tuple<S, int, int>, vector<tuple<S, int, int>>, greater<tuple<S, int, int>>> pq;
		pq.emplace(_ZERO, s, -1);
		while(pq.size()){
			auto [dist_from, from, index] = pq.top(); pq.pop();
			if(dist[s][from] <= dist_from) continue;
			dist[s][from] = dist_from;
			idx[s][from] = index;
			for(int index : G[from]){
				int to = E[index].to;
				S dist_to = apply(E[index].cost, dist_from);
				if(dist[s][to] <= dist_to) continue;
				pq.emplace(dist_to, to, index);
			}
		}
	}
	int farthest(int s){
		if(!initialized[s]) calc(s);
		int idx = 0;
		rep(i, n) if(dist[s][i] > dist[s][idx]) idx = i;
		return idx;
	}
	S get_dist(int s, int t){
		if(!initialized[s]) calc(s);
		return dist[s][t];
	}
	vector<int> restore(int s, int t){
		if(!initialized[s]) calc(s);
		if(dist[s][t] == _INF) return vector<int>(0);
		vector<int> res;
		while(idx[s][t] != -1){
			auto e = E[idx[s][t]];
			res.push_back(idx[s][t]);
			t = e.from;
		}
	reverse(res.begin(), res.end());
	return res;
	}
};

int main(){
	int h, w;
	cin >> h >> w;
	vector<string> s(h);
	cin >> s;
	Dijkstra<S, F> graph(h * w);
	rep(y, h) rep(x, w - 1){
		if(s[y][x] == '.' and s[y][x + 1] == '.'){
			graph.add_edge(y * w + x, y * w + (x + 1), F(1, 0));
			graph.add_edge(y * w + (x + 1), y * w + x, F(1, 0));
		}
	}
	rep(x, w) rep(y, h - 1){
		if(s[y][x] == '.' and s[y + 1][x] == '.'){
			graph.add_edge(y * w + x, (y + 1) * w + x, F(0, 1));
			graph.add_edge((y + 1) * w + x, y * w + x, F(0, 1));
		}
	}
	auto ans = graph.get_dist(0, h * w - 1);
	if(ans == _INF){
		cout << "No\n";
	}else{
		cout << "Yes\n";
		cout << ans;
	}
	return 0;
}
0