結果

問題 No.2914 正閉路検出
ユーザー umimel
提出日時 2024-10-04 22:53:59
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 4,193 bytes
コンパイル時間 1,820 ms
コンパイル使用メモリ 188,436 KB
実行使用メモリ 32,772 KB
最終ジャッジ日時 2024-10-04 22:54:13
合計ジャッジ時間 11,354 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 16 WA * 39
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60LL;
const int IINF = (1 << 30) - 2;
template<typename T>
struct edge{
int from;
int to;
T cost;
int id;
edge(){}
edge(int to, T cost=1) : from(-1), to(to), cost(cost){}
edge(int to, T cost, int id) : from(-1), to(to), cost(cost), id(id){}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){}
void reverse(){swap(from, to);}
};
template<typename T>
struct edges : std::vector<edge<T>>{
void sort(){
std::sort(
(*this).begin(),
(*this).end(),
[](const edge<T>& a, const edge<T>& b){
return a.cost < b.cost;
}
);
}
};
template<typename T = bool>
struct graph : std::vector<edges<T>>{
private:
int n = 0;
int m = 0;
edges<T> es;
bool dir;
public:
graph(int n, bool dir) : n(n), dir(dir){
(*this).resize(n);
}
void add_edge(int from, int to, T cost=1){
if(dir){
es.push_back(edge<T>(from, to, cost, m));
(*this)[from].push_back(edge<T>(from, to, cost, m++));
}else{
if(from > to) swap(from, to);
es.push_back(edge<T>(from, to, cost, m));
(*this)[from].push_back(edge<T>(from, to, cost, m));
(*this)[to].push_back(edge<T>(to, from, cost, m++));
}
}
int get_vnum(){
return n;
}
int get_enum(){
return m;
}
bool get_dir(){
return dir;
}
edge<T> get_edge(int i){
return es[i];
}
edges<T> get_edge_set(){
return es;
}
};
template<typename T>
struct redge{
int from, to;
T cap, cost;
int rev;
redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){}
redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){}
};
template<typename T> using Edges = vector<edge<T>>;
template<typename T> using weighted_graph = vector<Edges<T>>;
template<typename T> using tree = vector<Edges<T>>;
using unweighted_graph = vector<vector<int>>;
template<typename T> using residual_graph = vector<vector<redge<T>>>;
void solve(){
int n, m; cin >> n >> m;
graph<ll> G(n, true);
vector<tuple<int, int, ll>> es(2*m);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
ll w; cin >> w;
u--; v--;
es[2*i] = {u, v, w};
es[2*i+1] = {v, u, -w};
G.add_edge(u, v, w);
G.add_edge(v, u, -w);
}
vector<ll> dist(n, -LINF);
vector<int> dep(n, 0);
vector<int> epar(n, -1), vpar(n, -1);
function<void(int, int)> dfs = [&](int v, int p){
for(auto e : G[v]) if(e.to != p && dist[e.to] == -LINF){
dist[e.to] = dist[v] + e.cost;
dep[e.to] = dep[v] + 1;
epar[e.to] = e.id;
vpar[e.to] = v;
dfs(e.to, v);
}
};
for(int s=0; s<n; s++) if(dist[s]==-LINF){
dist[s] = 0;
dfs(s, -1);
}
for(int v=0; v<n; v++)for(auto e : G[v]){
if(dist[e.from]-dist[e.to]+e.cost!=0 && dep[e.to] < dep[e.from]){
vector<int> path;
int a = e.to, b = e.from;
path.pb(e.id);
while(b != a){
path.pb(epar[b]);
b = vpar[b];
}
reverse(all(path));
ll sum = 0;
for(int i : path) sum += get<2>(es[i]);
if(sum < 0) reverse(all(path));
cout << (int)path.size() << '\n';
cout << a+1 << '\n';
for(auto i : path) cout << i/2+1 << ' ';
cout << '\n';
return;
}
}
cout << -1 << '\n';
}
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
int T=1;
//cin >> T;
while(T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0