結果

問題 No.2563 色ごとのグループ
ユーザー hiro1729hiro1729
提出日時 2024-10-12 12:41:48
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 466 ms / 2,000 ms
コード長 2,546 bytes
コンパイル時間 332 ms
コンパイル使用メモリ 82,372 KB
実行使用メモリ 130,772 KB
最終ジャッジ日時 2024-10-12 12:41:59
合計ジャッジ時間 10,706 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 62 ms
68,980 KB
testcase_01 AC 63 ms
67,996 KB
testcase_02 AC 65 ms
67,816 KB
testcase_03 AC 62 ms
68,240 KB
testcase_04 AC 63 ms
67,828 KB
testcase_05 AC 63 ms
67,648 KB
testcase_06 AC 61 ms
68,172 KB
testcase_07 AC 63 ms
67,828 KB
testcase_08 AC 63 ms
67,876 KB
testcase_09 AC 63 ms
69,820 KB
testcase_10 AC 63 ms
68,188 KB
testcase_11 AC 65 ms
69,116 KB
testcase_12 AC 64 ms
70,080 KB
testcase_13 AC 62 ms
69,956 KB
testcase_14 AC 109 ms
78,968 KB
testcase_15 AC 106 ms
79,140 KB
testcase_16 AC 108 ms
78,664 KB
testcase_17 AC 104 ms
78,976 KB
testcase_18 AC 80 ms
74,868 KB
testcase_19 AC 109 ms
78,856 KB
testcase_20 AC 118 ms
81,072 KB
testcase_21 AC 114 ms
79,108 KB
testcase_22 AC 115 ms
79,372 KB
testcase_23 AC 116 ms
79,244 KB
testcase_24 AC 221 ms
94,320 KB
testcase_25 AC 213 ms
100,240 KB
testcase_26 AC 268 ms
114,068 KB
testcase_27 AC 252 ms
128,748 KB
testcase_28 AC 281 ms
118,600 KB
testcase_29 AC 362 ms
130,340 KB
testcase_30 AC 340 ms
130,272 KB
testcase_31 AC 337 ms
130,772 KB
testcase_32 AC 373 ms
130,452 KB
testcase_33 AC 466 ms
117,412 KB
testcase_34 AC 462 ms
117,840 KB
testcase_35 AC 462 ms
118,092 KB
testcase_36 AC 441 ms
117,796 KB
testcase_37 AC 466 ms
117,032 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
from collections import defaultdict as dd
S = input
R = range
P = print
def I(): return int(S())
def M(): return map(int, S().split())
def L(): return list(M())
def O(): return list(map(int, open(0).read().split()))
def yn(b): print("Yes" if b else "No")
biga = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
smaa = "abcdefghijklmnopqrstuvwxyz"
ctoi = lambda c: ord(c) - ord('a')
itoc = lambda i: chr(ord('a') + i)
inf = 10 ** 18
mod = 998244353
def acc(a):
	b = [0]
	for i in a:
		b.append(b[-1] + i)
	return b
import typing


class DSU:
    '''
    Implement (union by size) + (path halving)

    Reference:
    Zvi Galil and Giuseppe F. Italiano,
    Data structures and algorithms for disjoint set union problems
    '''

    def __init__(self, n: int = 0) -> None:
        self._n = n
        self.parent_or_size = [-1] * n

    def merge(self, a: int, b: int) -> int:
        assert 0 <= a < self._n
        assert 0 <= b < self._n

        x = self.leader(a)
        y = self.leader(b)

        if x == y:
            return x

        if -self.parent_or_size[x] < -self.parent_or_size[y]:
            x, y = y, x

        self.parent_or_size[x] += self.parent_or_size[y]
        self.parent_or_size[y] = x

        return x

    def same(self, a: int, b: int) -> bool:
        assert 0 <= a < self._n
        assert 0 <= b < self._n

        return self.leader(a) == self.leader(b)

    def leader(self, a: int) -> int:
        assert 0 <= a < self._n

        parent = self.parent_or_size[a]
        while parent >= 0:
            if self.parent_or_size[parent] < 0:
                return parent
            self.parent_or_size[a], a, parent = (
                self.parent_or_size[parent],
                self.parent_or_size[parent],
                self.parent_or_size[self.parent_or_size[parent]]
            )

        return a

    def size(self, a: int) -> int:
        assert 0 <= a < self._n

        return -self.parent_or_size[self.leader(a)]

    def groups(self) -> typing.List[typing.List[int]]:
        leader_buf = [self.leader(i) for i in range(self._n)]

        result: typing.List[typing.List[int]] = [[] for _ in range(self._n)]
        for i in range(self._n):
            result[leader_buf[i]].append(i)

        return list(filter(lambda r: r, result))
n,m=M()
c=L()
uf=DSU(n)
for _ in R(m):
	a,b=M()
	if c[a-1]==c[b-1]:
		uf.merge(a-1,b-1)
cnt=[0]*n
for i in uf.groups():
	s=set()
	for j in i:s.add(c[j])
	for j in list(s):cnt[j-1]+=1
P(sum(max(0,i-1)for i in cnt))
0