結果
| 問題 | No.1409 Simple Math in yukicoder |
| コンテスト | |
| ユーザー |
mjtai
|
| 提出日時 | 2024-10-17 03:56:49 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 19 ms / 2,000 ms |
| コード長 | 7,888 bytes |
| コンパイル時間 | 4,136 ms |
| コンパイル使用メモリ | 249,836 KB |
| 最終ジャッジ日時 | 2025-02-24 20:03:05 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 58 |
ソースコード
///////////////////////////////////////////////////////////////////////////////
#include <bits/stdc++.h>
#include <unistd.h>
#include <time.h>
#include <sys/time.h>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
///////////////////////////////////////////////////////////////////////////////
typedef long long ll;
typedef unsigned long long ull;
typedef __int128_t ll128;
typedef tuple<ll, ll> t2;
typedef tuple<ll, ll, ll> t3;
typedef tuple<ll, ll, ll, ll> t4;
typedef tuple<ll, ll, ll, ll, ll> t5;
template <typename T>
using priority_queue_incr = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using binary_search_tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
#define pb push_back
#define V vector
#define S static
#define SP << " " <<
#define rep(i,n) for(ll i=0LL; i<n; ++i)
#define srep(i,s,n) for(ll i=s; i<n; ++i)
#define rrep(i,n) for(ll i=n-1LL; i>=0LL; --i)
#define rfrep(i,f,n) for(ll i=n-1LL; i>=f; --i)
#define cfor(i,x) for(const auto & (i) : (x))
#define ALL(a) (a).begin(),(a).end()
#define RALL(a) (a).rbegin(),(a).rend()
#define CIN(x) do { \
assert(!cin.eof()); \
cin >> x; \
assert(!cin.fail()); \
} while(0);
#define E18(x) ((x) * 1'000'000'000'000'000'000LL)
#ifdef DEBUG
#include "../../../template/debug.h"
#else // DEBUG
#define debug_print(...)
#define debug_printf(...)
#define debug_print_mod(...)
#endif // DEBUG
///////////////////////////////////////////////////////////////////////////////
ll llin()
{
ll a; CIN(a); return a;
}
V<ll> llina(ll count)
{
V<ll> v;
for (ll i = 0LL; i < count; ++i) {
ll a; CIN(a); v.push_back(a);
}
return v;
}
V<V<ll>> llinaa(ll h, ll w)
{
V<V<ll>> v(h, V<ll>(w));
rep (hh, h) rep (ww, w) {
ll a; CIN(a); v[hh][ww] = a;
}
return v;
}
V<t2> llinl2(ll count)
{
V<t2> v;
for (ll i = 0LL; i < count; ++i) {
ll a, b; CIN(a >> b); v.push_back(t2(a, b));
}
return v;
}
V<t3> llinl3(ll count)
{
V<t3> v;
for (ll i = 0LL; i < count; ++i) {
ll a, b, c; CIN(a >> b >> c); v.push_back(t3(a, b, c));
}
return v;
}
V<t4> llinl4(ll count)
{
V<t4> v;
for (ll i = 0LL; i < count; ++i) {
ll a, b, c, d; CIN(a >> b >> c >> d); v.push_back(t4(a, b, c, d));
}
return v;
}
string strin()
{
string s; CIN(s); return s;
}
V<string> strina(ll count)
{
V<string> slist(count);
for (ll i = 0; i < count; ++i) CIN(slist[i]);
return slist;
}
template <typename T>
void sort(V<T> &v)
{
sort(v.begin(), v.end());
}
template <typename T>
void sort_reverse(V<T> &v)
{
sort(v.begin(), v.end(), greater<T>());
}
t2 _ext_gcd(ll a, ll b, ll g)
{
if (!b) return t2(1, 0);
ll q = a / b;
ll r = a % b;
auto [sx, sy] = _ext_gcd(b, r, g);
ll x = sy;
ll y = sx - q * sy;
return t2(x, y);
}
t2 ext_gcd(ll a, ll b)
{
return _ext_gcd(a, b, gcd(a, b));
}
// x and mod must be coprime
ll mod_inv(ll x, ll mod)
{
auto [ret, xxxx] = ext_gcd(x, mod);
while (ret < 0) ret += mod;
ret %= mod;
return ret;
}
// O(log(exp))
ll mod_pow(ll base, ll exp, ll mod)
{
ll ret = 1LL;
for ( ; exp; ) {
if (exp & 1LL) {
ret *= base;
ret %= mod;
}
base = (base * base) % mod;
exp >>= 1;
}
return ret;
}
ll mod_mlt(ll x, ll y, ll mod)
{
ll ret = 0LL;
x %= mod;
while (y) {
if (y & 1LL) {
ret += x;
ret %= mod;
}
y >>= 1;
x <<= 1;
x %= mod;
}
return ret;
}
// returns t2(solution, mod)
t2 chinese_remainder(ll a1, ll m1, ll a2, ll m2)
{
assert(a1 >= 0);
assert(m1 > 0);
assert(a2 >= 0);
assert(m2 > 0);
ll mgcd = gcd(m1, m2);
if (a1 % mgcd != a2 % mgcd) return t2(0, 0);
ll mlcm = m1 * m2 / mgcd;
t2 z = ext_gcd(m1, m2);
ll z1 = get<0>(z);
ll z2 = get<1>(z);
// ll x = a1 + ((a2 - a1) / mgcd) * m1 * z1;
ll x = z1;
while (x < 0) x += mlcm;
x = mod_mlt(x, m1, mlcm);
ll coef = (a2 - a1) / mgcd;
while (coef < 0) coef += mlcm;
x = mod_mlt(x, coef, mlcm);
x += a1;
x %= mlcm;
return t2(x, mlcm);
}
void get_divisors(V<ll> &retlist, ll x)
{
for (ll i = 1LL; i < sqrt(x) + 3LL; ++i) {
if (x % i == 0LL) {
retlist.push_back(i);
retlist.push_back(x / i);
}
}
}
// returns factors and 1
void get_factors(V<ll> &retlist, ll x)
{
retlist.pb(1LL);
for (ll i = 2LL; i < (ll)(sqrt(x)) + 3LL; ++i) {
while (x % i == 0LL) {
retlist.pb(i);
x /= i;
}
}
retlist.pb(x);
}
bool is_prime(ll x)
{
V<ll> factors, factors2;
get_factors(factors, x);
for (auto factor : factors) {
if (factor > 1) factors2.pb(factor);
}
return factors2.size() == 1 && x == factors2[0];
}
V<ll> eratosthenes(ll n)
{
V<ll> primes;
bool *is_not_prime = new bool[n+3LL];
memset(is_not_prime, 0, sizeof(bool) * (n+3LL));
srep (v, 2LL, (ll)sqrt(n)+10LL) {
if (is_not_prime[v]) continue;
for (ll vv = v * 2LL; vv <= n; vv += v) {
is_not_prime[vv] = true;
}
}
srep (v, 2LL, n+1LL) if (!is_not_prime[v]) primes.pb(v);
delete [] is_not_prime;
return primes;
}
// p must be prime
ll mod_root(ll p)
{
if (p == 2) return 1;
if (p == 3) return 2;
V<ll> flist;
get_factors(flist, p-1LL);
set<ll> fs;
for (auto f : flist) if (f > 1) fs.insert(f);
srep (a, 2, p) {
bool ok = true;
for (auto f : fs) {
if (mod_pow(a, (p-1LL) / f, p) == 1) {
ok = false;
break;
}
}
if (ok) return a;
}
assert(false);
}
ull combination(ll x, ll y)
{
if (y > x / 2LL) y = x - y;
ull ret = 1LL;
for (ll i = 0LL; i < y; ++i) {
ret *= x--;
ret /= (i + 1LL);
}
return ret;
}
// count of integers coprime with x (1<=k<=x)
ll euler_phi(ll x)
{
V<ll> flist;
get_factors(flist, x);
map<ll, ll> fcnts;
cfor (f, flist) {
if (f == 1) continue;
fcnts[f]++;
}
ll ret = 1;
cfor (item, fcnts) {
ll f = item.first;
ll fc = item.second;
ll a = 1;
rep (xx, fc) a *= f;
ll b = 1;
rep (xx, fc-1) b *= f;
ret *= a - b;
}
return ret;
}
#if 0
// (base[0] * x^0 + base[1] * x^1 + base[2] * x^2 + ... ) / (div[0] * x^0 + div[1] * x^1 + div[2] * x^2 + ... )
void polynomial_div(V<mint> &q, V<mint> &r, V<mint> base, V<mint> div)
{
ll blen = base.size();
ll dlen = div.size();
reverse(ALL(base));
reverse(ALL(div));
mint basemlt = div[0].inv();
rep (i, blen - dlen + 1) {
mint mlt = basemlt * base[i];
rep (j, dlen) base[i+j] -= div[j] * mlt;
q.pb(mlt);
}
reverse(ALL(q));
ll idx = blen;
rep (xxx, dlen - 1) r.pb(base[--idx]);
}
#endif
///////////////////////////////////////////////////////////////////////////////
void _main();
int main()
{
cout << fixed << setprecision(18);
#ifndef DEBUG
ios::sync_with_stdio(false);
cin.tie(0);
#endif // DEBUG
_main();
return 0;
}
///////////////////////////////////////////////////////////////////////////////
void slv()
{
ll v = llin();
ll x = llin();
ll mod = v * x + 1LL;
ll root = mod_root(mod);
ll a = mod_pow(root, v, mod);
V<ll> anslist;
ll b = a;
rep (i, x) {
anslist.pb(b);
b = (b * a) % mod;
}
sort(anslist);
cfor (ans, anslist) cout << ans << " ";
cout << "\n";
}
void _main()
{
ll t = llin();
rep (i, t) slv();
}
///////////////////////////////////////////////////////////////////////////////
mjtai